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Abstract

In this paper we shall study vector cascade algorithms and refinable function vectors with a
general isotropic dilation matrix in Sobolev spaces. By introducing the concept of a canonical
mask for a given matrix mask and by investigating several properties of the initial function
vectors in a vector cascade algorithm, we are able to take a relatively unified approach to study
several questions such as convergence, rate of convergence and error estimate for a perturbed
mask of a vector cascade algorithm in a Sobolev space Wlﬁ‘(RA) (I<p< oo, keNU{0}). We

shall characterize the convergence of a vector cascade algorithm in a Sobolev space in various
ways. As a consequence, a simple characterization for refinable Hermite interpolants and a
sharp error estimate of a vector cascade algorithm in a Sobolev space with a perturbed mask
will be presented. The approach in this paper enables us to answer some unsolved questions in
the literature on vector cascade algorithms and to comprehensively generalize and improve
results on scalar cascade algorithms and scalar refinable functions to the vector case.
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1. Introduction

Refinable function vectors and vector subdivision schemes, as two of the
most important and extensively studied fundamental objects in the literature of
wavelet analysis, are useful in many applications such as signal processing and
computer aided geometric design [3,9,12,21,23-25,34,37,45,46]. A vector cascade
algorithm is closely related to a vector subdivision scheme. It is the purpose of this
paper to study refinable function vectors and vector cascade algorithms in a
relatively unified approach to have a better picture and understanding of some of
their properties.

An s x s integer matrix M is called a dilation matrix if all its eigenvalues are
greater than one in modulus. In this paper, we are concerned with the following
vector refinement equation

¢ =|det M| > a(B)p(M - =), (1.1)
pez’
where ¢ = (¢, ..., ¢,)" is called an M-refinable function vector which is an r x 1

column vector of compactly supported functions or distributions, and « is called a
(matrix) mask with multiplicity r» which is a finitely supported sequence of r x r
complex-valued matrices on Z°.

Let Ny denote all the nonnegative integers. For pu = (u,, ..., 1) Ny, we denote

= L+ oo+ gl =l and &= &0 for & = (&, ..., &) R The
partial derivative of a differentiable function f with respect to the jth coordinate is
denoted by D;f, j=1,...,s, and for u= (u;,...,u,)eN}, D* is the differential
operator D{'---Df*. We denote by W[’f([RES) the Sobolev space that consists of all
functions f such that D"f e L,(R*) for all ue Ng and |u| <k, equipped with the norm
defined by

||f||W[’;'(RS) = Z ||Duf||Lp(R5)'

lul<k

For a Banach space (B, || - ||z), we denote (B™*" || - ||gu) the Banach space of all
m x n matrices (D) <;<m1<k<, Whose entries are elements in B, equipped with the

following norm:

‘|(bj,k)1g/sm,lskgnHBmx" = ||(‘|bj,k||B)1g/‘gm:lskgnHR’"x’H
where || - ||pn<» denotes some norm on R"". Note that all norms || - ||gm= on R™"
are equivalent. In particular, R® := R**! for short.
Start with some appropriate initial function vector (;S()e(Wlﬂc (R*))™'. In order to
solve the vector refinement equation (1.1), we employ the iteration scheme
" Po (meNg), where Qg is the cascade operator on (L,(R))™" (1<p< o)
given by
. , . sy
Quuf = |det M| Y a(B)f (M - —p), fe(L,(R))™". (1.2)

pe’
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This iteration scheme is called a (vector) cascade algorithm (see [3,9]) associated with
mask a and dilation matrix M. If ¢ is a fixed point of O, s (thatis, O, ¢ = ¢), then
¢ must satisfy (1.1). When the multiplicity » = 1, a vector cascade algorithm and a
refinable function vector are called a scalar cascade algorithm and a scalar refinable
function, respectively.

Vector cascade algorithms and various properties of refinable function vectors
have been extensively studied in literature [1-47]. See Section 4 for detailed
discussion on recent developments on cascade algorithms. This paper is largely
motivated by the work in Chen et al. [4] on convergence of vector cascade algorithms
and by the work in [23] on refinable Hermite interpolants and their applications in
computer-aided geometric design.

Though vector cascade algorithms and vector subdivision schemes have been
relatively well studied in the literature, there are still several unanswered questions in
this area and we feel that a relatively unified and self-contained approach is helpful
to have a better picture and understanding of these and related topics.

For a compactly supported r x 1 function vector f on R’, we say that the shifts of

f are stable (see [30]) if span{f(f +27p): pez*} = C™! for all é€R®, where the
Fourier transform ¢ of ge L;(R’) is defined to be §(&) = [ g(1)e "< dt, £eR’ and
can be naturally extended to tempered distributions.

In the following, let us mention some questions that motivate this work.

Q1: As in [4], let Y, denote the set of all appropriate initial function vectors in a
cascade algorithm. It was asked in Chen et al. [4] that “It would be interesting
to know whether there always exists some F = (fi, ..., f,)T in Y such that the
shifts of f1, ..., f, are stable.”

Q2: Suppose that QI is true and the cascade algorithm with such an initial function
vector F converges in a Sobolev space. Will the cascade algorithm with every
initial function vector in Y; converge in the Sobolev space?

Q3: As an interesting family of refinable function vectors, refinable Hermite
interpolants are of interest in computer-aided geometric design (see
[12,17,23,37,45,46]). How to characterize a refinable Hermite interpolant in
terms of its mask?

Q4: In many situations, truncation and perturbation of a mask are needed in
applications. How will the perturbation of a matrix mask affect its vector
cascade algorithm and its refinable function vector?

The structure of the paper is as follows. In Section 2, we shall introduce some
auxiliary results which are of interest in their own right. Then we shall demonstrate
that based on a simple observation which converts a given matrix mask into a
canonical mask, vector cascade algorithms and refinable function vectors can be
essentially investigated using the same techniques for the scalar case. At the end of
Section 2, we shall study the structures of two very important subspaces in wavelet
analysis.

In Section 3, we shall investigate necessary conditions for the initial function
vectors in a cascade algorithm. The difficulty in Q1 partially lies in the fact that the
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set Y%, which is described in [4], has a rather complicated structure. Our investigation
leads to a very simple way of describing the set Y, of all possible initial function
vectors and consequently allows us to affirmatively answer Q1 (See Proposition 3.5).
As in [18], we shall also investigate the mutual relations among the initial function
vectors in a cascade algorithm. It turns out that such mutual relations are very useful
in investigating many problems related to cascade algorithms.

In Section 4, we shall characterize the convergence of a vector cascade
algorithm in a Sobolev space in terms of its mask in various ways. In
particular, we shall give a positive answer to Q2 (See Theorem 4.3). It turns
out that there is a very important quantity v,(a, M) defined in (4.3) in Section 4
which connects the convergence of vector cascade algorithms with the smoothness
of refinable function vectors. More precisely, when M is isotropic and the shifts
of a refinable function vector ¢ with mask a and dilation matrix M are stable,
the quantity v,(a, M) is equal to the critical L, smoothness exponent of ¢. On the
other hand, we shall show in Section 4 that a vector cascade algorithm associated
with mask « and dilation matrix M for every initial function vector in Y, converges
in the Sobolev space WIf(RS) if and only if v,(a, M) > k. In the rest of Section 4, we
shall also investigate the rate of convergence of a vector cascade algorithm (See
Theorem 4.4).

In Section 5, we shall completely characterize a refinable Hermite interpolant
in terms of its mask which settles Q3 (See Corollary 5.2). We show that a
refinable function vector ¢ with mask a and dilation M is a Hermite interpolant of
order r if and only if its mask a is a Hermite interpolatory mask of order r and
Ve (a, M)>r.

In Section 6, we shall study how the perturbation of a mask will affect its vector
cascade algorithm and its refinable function vector. We settle Q4 by obtaining a
sharp error estimate for a vector cascade algorithm and a refinable function vector
with a perturbed mask in Section 6 (See Theorem 6.2). The results in Section 6 are
not trivial generalizations of the corresponding results in the scalar case since when
r>1 the set Y} of initial function vectors indeed depends on the perturbed mask and
therefore, is not invariant under perturbation.

Since the quantity v,(a, M) is very important, in Section 7, we shall discuss how to
compute the particular quantity v,(a, M) by an efficient numerical algorithm in [28]
(See Theorem 7.1). We shall also discuss how to compute v,(a, M) by factorizing the
symbol of a univariate matrix mask «a (See Proposition 7.2).

In this paper, we not only give alternative proofs for and improve some known
results in the literature, but also obtain some new results on vector cascade
algorithms and refinable function vectors. Our approach in this paper is relatively
unified and may yield relatively simple proofs. The approach in this paper will be
helpful for other problems related to vector cascade algorithms and refinable
function vectors; it also enables us to have a better understanding of vector
subdivision schemes in the geometric setting. Moreover, when k = 0, the Sobolev
space W,ﬁ‘ (R*) is the L,(R®) space and we observe that all the results and proofs in

this paper hold for a general (not necessarily isotropic) dilation matrix.
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2. Auxiliary results, canonical masks and two subspaces

In this section, we shall introduce some auxiliary results and the concept of a
canonical mask for a given matrix mask. Then we shall investigate the structure of
two subspaces which play an important role in analyzing various properties of vector
cascade algorithms and refinable function vectors.

For keNy, let O be the ordered set {ueNj: |u| =k} under the lexicographic
order. Thatis, v = (vy, ..., vs) is less than pt = (g, ..., ft,) in the lexicographic order if
[v|<|u| orv; = w;forj=1,...;i— 1 and v;<y;. By #0O we denote the cardinality of
the set Og. For an s x s matrix N, S(N, Oi) is defined to be the following (#0y) x
(#0y) matrix [19] uniquely determined by

(Nx)
u!

x’
> SN, Oty HEOk (2.1)

Ve Ok

It is obvious that S(4, Ok)S(B, Ox) = S(AB, O). For matrices 4 = (dij);<i<11<j<y
and B = (bsn)<;<r1<n<n- the (right) Kronecker product A® B is defined to be
(ai-jB>1<i<1,1<j<J; its (i—=1)L+¢,(j—1)N+n)-entry is a;jbs, and can be
conveniently denoted by [4 ® B); jon 1Uis well known that (A+B)®C=(ARC)+
(B®C), CR®A+B)=(C®A4)+(C®B), (AXB)(CR®E)=(AC)®(BE) and
(A®B)" = AT®BT.

The following result generalizes [18, Proposition 2.6] and is convenient to deal
with derivatives in Sobolev spaces.

Proposition 2.1. Let D = [Dy, ..., Dy] be the row vector of differentiation operators.
Denote the 1 x s5 row vector of kth order differentiation operators by ®*D =
D® --- ® D with k copies of D, where ® denotes the (right) Kronecker product. Let N
be an s x s real-valued matrix. For any matrix f of functions in C*(R®) and for any
matrices B and C of complex numbers such that the multiplication BfC is well defined,
then

[®*D]®[Bf(N)C](-) = BI® DI ®f )(N)([®@"N|®C), (2.2)
or equivalently,
7" ®[Bf (N-)C() = B(Z*® )(N-)(S(N, 01) ® C), (2.3)

where 7% = (DV) uco, 18 al x (#0k) row vector of kth order differentiation operators
and S(N, Oy) is defined in (2.1).

Proof. Let F = BfC. As in [18], it is easy to check that [D®[F(N")]],,;, =
[(DN)®F]]7[;,-/(N-). So, DQ[F(N-)] = [(DN)® F](N-). By induction, we have
[®*“D]®[Bf (N-)C](-) = [®"(DN)]® [BfC](N-) = B[®"(DN)® (fO)|(N)
=B([®"DI®/)(N-)([® N]®C).
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In order to prove (2.3), we define a (#0y) x s* matrix H by H,; = 1, if [®kD]1J =
D", and 0, otherwise, for j =1, ...,s* and pue Oy. Similarly, define an s x (#0y)
matrix G by Gj, =1, if j = min{i: [®kD]u = D"}, and 0, otherwise. It is easy to
verify that

HG = I, 9"=(®*D)G, ®'D=(9")H
and
S(N,0) = H®N)G.
It follows from (2.2) and the above relations that (2.3) holds. [

The following result will be needed later and is of interest in its own right.

Lemma 2.2. Let M be an s x s matrix. Let A,B,C,E,F be given matrices of 2mu-
periodic trigonometric polynomials such that A, B, C, E are square matrices. Let X be
an unknown m x n matrix of 2m-periodic trigonometric polynomials such that
AEOX(MTE)B(E) — C(E)X(E)E(E) — F(&) is well defined. Suppose that X (0) satisfies
A(0)X (0)B(0) = C(0)X(0)E(0) + F(0). If (&/M)®B(0)” ®A(0) — I, @ E(0) ®
C(0) (or equivalently, S(M, 0;) ® B(0)" ® A(0) — Lyo, QE(0)" ® C(0)) is invertible
forallj =1, ... k, then the following system of linear équations given by

DM[A()X(MT)B(-)](0) = D*[C()X ()E(-))(0) + D"F(0), 0<|ul<k  (24)
has a unique solution for {D*X(0): 0<|u|<k}.

Proof. It is well known that vec(CXE) = (ET® C)vec(X), where for X =
(Xij)i<icmi<j<m
vee(X) = (Xity ooy Xonts X125 ooy Xon2s ooy Xty oovs Xoun) '
Rewrite (2.4) as
D"[(B(-)" @A(-))vec(X (M"-))](0)
= D'[(E()" ® C(-))vec(X(-))](0) + D*[vec(F))(0).
So, it suffices to prove the claim with B = E = I. Now (2.4) becomes
[®/D]®[A(0)X (M) — C(0)X()](0)
= [®/DI®[(C(-) = C(0)X () + F(-) + (A4(0) — A(-))X (MT-)](0)
=: Gj

for j=1,...,k. By the Leibniz differentiation formula, we observe that G; only
involves DX (0), |u|<j. So, by Proposition 2.1, we have

A(0)([®/D]®@X)(0)([®/MT|®1,) — C(0)([®'D]®X)(0)L1, = G



50 Bin Han | Journal of Approximation Theory 124 (2003) 44-88

forj=1,..., k. That is,
((®/M]®1,®A(0) — L1, ® C(0))vec(([® /D] ® X)(0)) = vec(G))
forj =1, ..., k. Since the matrix (® 'M)®1,® A(0) — I,;,, ® C(0) is invertible for
every j =1, ....k, we have
vee([® D)@ X)(0)) = ([® /M@ L, ® A(0) — I,/ ® C(0)) 'vec(G)).
The proof is completed by inductiononj=1,....k. O

A matrix M is isotropic if M is similar to a diagonal matrix diag(ay, ..., ;) such
that |o1| = - = |o,| = |det M|"*. An s x s matrix M is isotropic [18] if and only if
there exists a norm || - ||,, on C™! such that

|Mx]||,, = |det M|"*||x]|,, VxeC™!. (2.5)

When M is isotropic, || - ||,, denotes a norm on C**! such that (2.5) holds. For a

Hl/n

matrix or an operator 4, we denote p(A) == lim,_, ., ||4"||"’" the spectral radius of 4.

When 4 is an s X s isotropic matrix, we have p(4) = |detA|l/S.
The Fourier series or symbol of a sequence a on Z° is defined to be

a(¢) =Y a(f)e’t, ceR'. (2.6)

pez’

Throughout this paper, we denote a,(neNj) to be the sequence defined by
a,(&) =[] a(mTy™78) = a(MT)"1¢)--a(MTE)a(e). (2.7)
j=1

The sequence a, is closely related to a vector subdivision scheme used in computer-
aided geometric design and plays an important role in investigating vector cascade
algorithms and refinable function vectors.

Lemma 2.3. Let M be an s X s isotropic dilation matrix. Suppose that f,(neN) are
function vectors in (Wp"([Ris))rXl such that the sequence f, converges to f., in the

Sobolev space (I/V/,‘(RS))M, 1<p< 0, and when p>1 we additionally assume that all
[ vanish outside a fixed compact set of R*. Then

Tim p(M)f(MT)'€) = lim Df((MTY"))(&) =0 Ve£0, [u/<k.

Proof. Since all f, are supported on a compact set when 1<p< oo, by Holder
inequality, it follows from the assumption lim,_, o || f; —fo (W (RS))™! =0 that
P

limy, -, o || f2 —fooH(W],C(R\,)),.XI =0.
Let N = MT and ¢ be a fixed nonzero point in R. Since Bﬂ\fn(é) = (i&)"£,(¢) and

||D”(fn/:foo)(an)|| < ||Du(fn —foo)H(L,(Rx))’“ <an —fw ||(W1k<Rl\))"X‘
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for |u| <k, we have
[GN"EY fu(N"E)| = | DHu(N" )< 1D f oo (NI 11 for =S gty
By the Riemann-Lebesgue lemma, we conclude that
lim [|(iN"&)" o (N")[ = lim [[DRfos (N"E)| + Tim (| fo = Foo |yt gy
n— oo n— oo n— o 1
=0 Vu<k.

The claim follows directly from the above identity, Proposition 2.1 and the
assumption that M is an isotropic dilation matrix. [

We denote by /y(Z°) the linear space of all finitely supported sequences on Z°.
Similarly, 7,(Z°) denotes the linear space of all sequences v on Z° such that

ol z)= (Cpez [o(B)")'? < o0 When K is a compact subset of Z°, /(K) denotes

the linear space of all ve/y(Z*) such that v vanishes outside K. By d we denote the
Dirac sequence on Z* such that 6(0) = 1 and 6(f) = 0 for all pe2°\{0}.

Let a be a matrix mask with multiplicity . We say that a satisfies the sum rules of
order k+ 1 with respect to the dilation matrix M if there exists a sequence

ye(£o(2*))™" such that $(0)#0,

DH[F(MT-)a(-)](0) = D"y(0)  V|u| <k, peNj (2.8)
and

DU F(M")d())(27B) =0 V|u|<k,pe(MT)'7)\2". (29)

The following result generalizes [22, Theorem 2.2] to any dimension and is quite
useful in studying vector cascade algorithms and refinable function vectors.

Proposition 2.4. Let ye(/o(Z°))™" such that $(0)#0. Then there exists
U, € (£(Z%))"™" such that det U, (&) is a nonzero constant (that is, the sequence having
symbol U,(&)™" is finitely supported) and

P(E) = [71(8)s -+, (O] = PO U,(&)
satisfies

710)=1, D5;(0)=0 Yji=2,..,r and |u<k.
Let a be a finitely supported matrix mask with multiplicity r and let ¢ satisfy

H(MTE) = a(&)$(&). Define

i(8) = Uy (M8 @O U0 and (&) = U()'$(2).

Then QS(MTé) 27(5)(?)(5) The equation in (2.8) holds if and only if
a

D[ F(MT-)a(-)](0) = D"$(0)  for all |u|<k.
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Therefore, when (2.8) holds, (&) must take the form:

( ;‘| with Ci]ﬁ](()) =1, D”sz(O) =0 V|,u|<k, (2.10)

where a1 €o(2°), al,Ze(KO(ZS))1X<r71)7 Clz,le(fo(zs))(ril)Xl and
aae(l O(ZS))("_I>X("_1). Moreover, the following statements are equivalent:

(a) The mask a satisfies the sum rules of order k+ 1 in (2.8) and (2.9) with the
sequence y;
(b) The mask a satisfies the sum rules of order k+ 1 in (2.8) and (2.9) with the

sequence § whose symbol is [ 7, (),0, ..., 0];
() (&) takes the form of (2.10) and
D’udl‘l(?_ﬂfﬁ) =0 and D"dl‘z(Znﬁ) =0

Viul <k, peMT) ' 20\2°. (2.11)

Proof. Write y(&) =[7i(&), .. ,ﬁ,(f)]. Since y(0)#0, we can assume Y;(0)#0;
otherwise we can permute the entries in y. Since y;(0)#0, it is easy to see that there
exist ¢;e/o(Z°%), j =2, ...,r such that D*[y;(-) — é(-

j=2,...,r, or equivalently, DHé;(0) = DM [ (- )/)5
2,...,r. Define U, e (/o(2°))"" by

1 ll —é(¢)

)71()](0) = 0 for all |u|<k and
(1)](0) for all |u|<k and j=

- with é(¢&) = [&(8), ..., 6(E)].
It is easy to verify that y(&) = j}(&)U,(¢) is desired. Other statements can be easily
proved by a direct computation and by the Leibniz differentiation formula. O

We call a mask satisfying (2.10) and (2.11) a canonical mask of a given mask. The
concept of a canonical mask allows us to investigate vector cascade algorithms and
refinable function vectors using the same techniques for the scalar case. A canonical
mask can preserve the symmetry of the original mask by appropriately choosing the
matrix U, [22].

The convolution of two sequences is defined to be

usv)(0) = > u(Byo(a—p), wue(£o(Z)*", ve(lo(2%)™".

pe?’
Define a semi-convolution of a function and a sequence as follows:

wef =Y uB)f(-—p), ue(o(Z) ", fe(Ly(R))"™", (2.12)

pez’



Bin Han | Journal of Approximation Theory 124 (2003) 44-88 53

or fru=73 4 5 f(-— pu(p) for Fe(Ly(R))™ ™ and ue (£o(Z°))™". 1t is easy to
verify that

ux (s f)=wxv)xf, ue(lo(Z%) ", ve(lo(Z)™", fe(L,(R*))"*.

Given ye(/y(Z°))"", we now define two interesting subspaces associated with y
which play an important role in wavelet analysis. Let D == [Dy, ..., D] be the row
vector of differentiation operators and let i denote the imaginary unit such that
i# = —1. Observe that (—iD)"y(0) = >_; 5 y(f)(—p)" and

_iD)"
b= D70 = 3 (090 S 500)
pneNg :
=Y (= BB =p*y, pell (2.13)
pe?’

where I, denotes the linear space of all polynomials with total degree no greater
than k. Define

V iy = {ve(lo(Z*) " px (y*0)(0) =0 Vpelli}. (2.14)
By (2.13), we see that

Py = {ve((o(Z°)™": D'[$(-)6(-)](0) =0 V|u|<k}.
Define

Pry ={p*ye(l)"": pell}

={lp(- = iD")y(0) e (M)"™": peTli}. (2.15)

For pe(Il;)™", we shall use p to denote both the polynomial matrix p(-)
and the polynomial sequence (p(f));.z» since they can be easily distinguished in
the context.

For a matrix 4 or an operator A acting on a finite-dimensional space V', we denote
spec(A4) or spec(A|,) the multiset of all eigenvalues of 4 or A|, counting the
multiplicity of the eigenvalues.

Proposition 2.5. Let ye (/o(Z°))"" such that y(0)#0. Let 7"y, and 2., be defined in
(2.14) and (2.15), respectively. Then

(1) ve¥ iy = v(- — P)eV k) for all BeZ°; that is, Vi, is shift invariant;
(2) pePry = D'pePyy and p(- — f)e Py, for all ueNy and fe 7’

G) vy, = {ve(to(7)™": S per P(B)o(=B) = p+v(0) = 0 Vpe 2y, };
4) Pry = {Pe(nk)lxri Z/}elf!’(ﬁ)v(—ﬁ) =pxv(0) =0 YoeV k,};
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(5) Let U, be given in Proposition 2.4. Then ¥y, = span{v(- — f): ve By, feZ°},
that is, B, generates the shift invariant space ¥’y ,, where By, is defined to be

By = {v: 8(&) = V*(E)U,(E)en, |u| =k + 1}
u{v: 3(&) = Uy(&ej, j=2,...,1}, (2.16)
where %(617 aés) = (1 - eiiél)‘ul (1 - lg\) fOl" H= (:uh . .a:us) and ¢

denotes the jth coordinate unit vector in R';

(6) The mask a satisfies the sum rules of order k+1 in (2.8) and (2.9) with the
sequence y if and only if Sy Pry S Pk, where the subdivision operator S, is
defined to be

Samv(a) = |det M| Z v(Ba(e — MP), ve(lo(Z*)"; (2.17)

pez’

(7) The mask a satisfies the sum rules of order k+ 1 in (2.8) and (2.9) with the
sequence y if and only if Ty mV iy SV ky, where the transition operator T a is
defined to be

Tunv(x) = |det M| > a(Ma— B)u(B), ve(/o(Z%)™". (2.18)

pez*

In fact, if a satisfies the sum rules of order k + 1 in (2.8) and (2.9) with the sequence y,
then  Sam(p*y)=p(M~')xy for all pelly and consequently, S,yp—
p(M™)EPyeypy1y for all pePr, and spec(Saumlz, ) = spec(Tamly, ) =
{(o1, ...,05) " |u|<k,pueN}}, where spec(M) = {01, ..., 05}.

Proof. By the definition of ¥7; , and #y ,, (1) and (2) hold. Point (3) follows directly
from (2.14) and (p * y) x v = p * (y * v). Point (4) can be easily verified by considering
the special case (&) = [7(¢),0, ...,0].

Take y(¢) = §(&)U,(€). By Proposition 2.4, we have ¥ ; = 7, [90000 = Vks X
(o(2°)" V! It is known (see [26]) that ¥7%s = span{V"5(- — B): BeZ’, |u| =
k + 1} which can be proved using long division (see [14,15]). Consequently, we
deduce that {V*de;: |u| =k + 1} U{de;: j=2,...,r} generates ¥ 5. Now it is easy
to see that %y, generates ¥y ,.

To prove (6), by Proposition 2.4, it suffices to prove it for the special case that
¥(&) = 171(9),0,...,0] and d(&) takes the form of (2.10). Let be/(Z*). It is an easy
exercise to show that (see [17, Proposition 2.2])

Zp — Mp)ell, Vpell
pez’
<D'b2nf) =0 Viu<k, peMT)'2\2". (2.19)
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If (2.19) holds and D*[¢(MT-)b(-)](0) = D*(0) for all |u|<k for some we/o(Z%),
then one has

Spup =|det M| >~ p(B)b(- — MB) = p(M ") x b
pez’

=> D“p(M“-)MZ;(O) Vpell; (2.20)

w

and consequently Sp y/(p * w) = p(M~"-) x w for all pell. In particular, one has

Spup =Idet M| > p(B)b(- — MB) =0 VpeTl,

pez’
< D"b(2nf) =0 V|u|<k,peMT) 7. (2.21)

Now by Proposition 2.4, we see that (6) is true since Z;, = {[p,0, ...,0]: peIl;} and
for all pelly,

Sa,M[p, 07 ceey O} = [Sal,l,Mpv Sal.z,Mp] = [Sul.l-Mp7 07 EES] 0]

=[p(M ") xa,,0,...,0].

Note that when §(&) = y(&)U(&) and d(¢) = UMTE) ™ a(&)U(é), it is easy to verify
that Sq () = 8(MTE)A(E) for ue(/o(2°)™" and Sau(v* §) = [Sum(v* )] * U.
We conclude that S,u(p*y)=p(M~')xy for all pelly. By (2.13), Somp —
p(M~") €llyegp)-1  for all  pelly  and  therefore, spec(SuﬁML,?k‘y) =
{(o1,...,05) 7" |u|<k}.

By a simple computation, for pe (IT;)"" and ve (/o(2°))"™", we have

> p() Tumv(—a) =|det M| > p(a)a(—Mea — B)u(p)

owe?Z’ o,fe?’

= Z Sa,Mp(ﬁ)U(_ﬂ)'

pez

Now (7) follows directly from (6) and the above identity. [

Note that a, = |det M|™"S}! ;/(],) and
o) = |det M["[ay « [ [(M") = S5, (01) * f | (M").

3. Initial function vectors in a vector cascade algorithm

In this section, we shall study the initial function vectors in a cascade algorithm.
Results in this section will be useful in investigating vector cascade algorithms and
refinable function vectors.

In the following, following the lines developed in [18], we study some necessary
conditions for initial function vectors in a cascade algorithm. Using Taylor series, we



56 Bin Han | Journal of Approximation Theory 124 (2003) 44-88

see that the condition in (2.8) is equivalent to saying that y(M7T¢&)d(¢) = (&) +
o(|¢[), as €—0. All the results and proofs involving y in this paper depend only on
the values D"3(0), |u| <k. So, when D"3(0) = D"3(0) for all |u| <k, we can replace y
by J.

The assumption in (2.8) is justified by the following result which generalizes [4,
Lemma 2.1].

Proposition 3.1. Let M be an s x s isotropic dilation matrix. Let f be an r x 1 column
vector of compactly supported functions in W[f([RQS) such that span{f(2np): feZ*} =
C™. If lim,, o ||QZ.Mf_fOCH(I/VI’;(R"'))"X' =0 for some f,#0, where the cascade
operator Qg is defined in (1.2), then

1 is a simple eigenvalue of d(0) and all other eigenvalues of d(0)

are less that p(M)™* in modulus. (3.1)

Consequently, there exists ye (£o(2°))"" such that ¥(0)#0 and (2.8) holds. Moreover,
if (3.1) holds, then up to a scalar multiplication the values D"y(0), |u|<k satisfying
(2.8) are uniquely determined by the mask a.

Proof. Let f, =04, f. Then fi(MT)'¢)=d,(&)f(¢) and lim,_ ||f, -
Joollwrgeyy=r = 0, where a, is defined in (2.7). Note that 4,(0) = [d(0)]". It follows

from Lemma 2.3 that
lim p(M)*(a(0)"/(2np) = lim p(M)"f,(M")"2mp)
=0 Vpez"\{0}. (3.2)

We claim that fA(O);éO. Otherwise, combining ﬂO) =0, (3.2) and the assumption
span{/(2np): peZ’} = C™', we deduce that p(d(0))<p(M)*<1. It follows that
Fo (€)= nli)ngO dy(MT)™"E) foo((MT)™"E) =0 which is a contradiction to our
assumption f, #0. Now it is easy to verify that (3.1) holds.

Note that (3.1) implies that [®/M]®d(0)" — I,;,, is invertible for every j =
1,...,k. By Lemma 2.2 and the fact that 1 is a simple eigenvalue of d(0), there is a

unique solution {D*y(0): 0<|u| <k} to the system of linear equations in (2.8) for
any given y(0)#0 satisfying (0)d(0) = y(0). O

For initial function vectors in a vector cascade algorithm, we have the following
result.

Proposition 3.2. Assume that there exists ye (£o(Z°))"™" such that $(0)#0 and (2.8)
holds. For any compactly supported function vector fe(W;(RS))m, if the

sequence A (neN) converges in the Sobolev space (W;‘([RS))er and
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lim, -, $(0) QO v/ (0) = 1., then

FO0) =1 and D*[y(-)A)(2np) =0 V|u|<k,Bez\{0}. (33)
If (3.1) holds, then there is a unique distribution vector ¢ satisfying d)(M ey =
Q(&)p() and F(0)$(0) = 1. If pe(WS(R)™" satisfies d(MTE) = d(&)d(&) and
F0)$(0) = 1, then

D'[3()$()])(0) = 6(w) and D'[F(-)d(-)](2np) =0 V|u|<k, feZ\{0}.
(3.4)

Proof. Let N = MT. Define f, by
Ju(©) = () Qi paf (8) = FQ(NT"OANTE).

By (2.8) and the Leibniz differentiation formula, for f€Z° and |u| <k, by induction
we have

D"[fu(N"))(2rp) = D*[ H(N")u (- )A(-)] (27B)
= D[ J(N-)a(-)/1))(2nB) = D"[()A)](2np).

Since the sequence O ),/ converges in (W;‘(R‘Y))”l, we deduce that the sequence f,
converges in W) (R*). By Lemma 2.3, we conclude that

DI (@) = lim DA/ (N"))(2) = 0

—

for all [u[<k and BeZ°\{0}. So, (3.3) holds since 1 = j¥(0)Q} ,,/(0) = 5(0)[d(0)]"
A0) = 5(0)A10) by 7(0)d(0) = 5(0).

When (3.1) holds, since 1 is a simple eigenvalue of d(0), there is a unique
distribution vector ¢ such that G(MTE) = d(&)p(¢) and $(0)$(0) = 1. When
pe(WER))™, by 0 = ¢, we have DU[F(-)h(-)](2xB) = 0 for all |u|<k and
Bez°\{0}. Since p(MTE) = d(&)P(¢), by (2.8), we have

D'[F(MT)$(MT))(0) = DL H(MT)a(-)d())(0) = D[ F()()](0)  V|ul<k.

Since M is a dilation matrix, by Lemma 2.2, the above system has a unique solution
for {D"[3()(-)](0): 0<|u|<k}. Obviously, the above system holds with
D[ Y(-)()](0) = 6(p), |u| <k which completes the proof. [

For a compactly supported function vector f e (W;‘([R{S))"Xl, we say that f satisfies
the moment conditions of order k + 1 with respect to y if (3.3) holds. It is well known
that (3.4) is equivalent to (p * y) * ¢ = p for all peIl,. Similarly, (3.3) is equivalent to
P — (p*y) *f€llgeypy—1 for all pelly, where deg(p) denotes the total degree of p.
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Throughout the paper, we denote
Fhypp = {fe(W[f(RS))’XI: f is compactly supported and satisfies
the moment conditions of order k + 1
with respect to y in (3.3)}. (3.5)

Note that the set %, , depends only on the values D*y(0), |u|<k. One can prove
that Q, i F 1 yp S F kyp if and only if a satisfies the sum rules of order k 4 1 in (2.8)
and (2.9) with the sequence y.

Lemma 3.3. Let y, je (/o(Z°))"" such that $(0) #0 and 5(0)#0. Then F 1., = F k5
if and only if there exists ce/y(Z*) such that ¢(0) = 1 and

D5(0) = D'[EC)F(N)0) Vil <k. (3.6)

Similarly, V'iy =V iy (or Pry = Pry) if and only if there exists ce((Z°) such that
(3.6) holds and ¢(0) #0.

Proof. By Proposition 2.4, it suffices to prove it for y(&) = [7(£),0, ...,0] with
71(0) = 1. In this case, #,, consists of all compactly supported function vectors
i for oo 5] € (WE(R)™! such that /1(0) = 1 and D*f;(2n) = 0 for all |u|<k and
Bez°\{0}. Write [y, ...,5,] = y. Now it is straightforward to see that %, , =
F k5, if and only if 1 (0) = 1 and D*3;(0) = 0 for all |u| <k andj = 2, ..., r. It is easy
to see that there exists ce/(Z*) such that D*¢(0) = D*[ 51(-)/¥1(-)](0) for all |u| <k.
We complete the proof. O

The following lemma will be needed later.

Lemma 3.4. Let {c,: |u|<k, ueNy} be arbitrarily given complex numbers such that
co = 0. For any £>0, there exists ce£o(Z°) such that ||¢(-)||, <& and D*¢(0) = ¢, for
all |p|<k.

Proof. We prove the claim by induction. When k& = 0, the claim holds by setting
¢ = 0. Suppose that the claim holds for £k = j — 1 with j> 1. By induction hypothesis,
there exists ae/o(Z") such that ||d(-)|[,, <&/2 and D"d(0) = ¢, for all |u|<j — 1. Itis
easy to see that there exists be/o(Z*) such that D*H(0) = 0 for all |u|<j— 1 and
DHb(0) = ¢y — D"d(0) for all |u|=j. For a large enough integer n, we see that
ln7b(n-)||, . <e/2. Set ¢(&) = d(&) +n7b(né). Then cely(Z°) is desired since it is
easy to verify that [|é(-)||, <eand D*é(0) = ¢, for all [u| <. So, the claim holds for
k =j. The proof is completed by induction. [

For an r x 1 vector f of compactly supported distributions on R, we say that the
shifts of /" are linearly independent if span{f(¢ + 2np): pe2*} = C™! for all EeC™".
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Therefore, if the shifts of f are linearly independent, then the shifts of /" are stable.

Let f be a compactly supported function vector in (LP(RS))"XI. It is known (see [30])
that the shifts of f are stable if and only if there exist positive constants C; and C,
such that

Cl||”||(//,(zS))‘“ S Z v(B)f (- = B)
I}GZS L,,(RS)
< Colloll g, oy Yoe (£,(2°)"". (3.7)

Note that when f'e (L,,(RS))er and /" is compactly supported, it can be easily proved
that the right side of (3.7) holds for some positive constant C,. For v = (vy, ..., vy)
and p = (i, ..., 1), v<pmeans v;<g; forall j =1, ..., s, and v<u means v<yu and
VF#E U

Before proceeding further, let us answer the question in [4] (see Q1 in Section 1 for
more detail) by the following stronger result.

Proposition 3.5. Let ye(/o(Z*))"" such that (0)#0. Let b, (0<|u|<J) be any
complex numbers. Then there is an r X 1 compactly supported function vector f in
(CT(R))™" such that the shifts of f are stable, D*[ j(-)A(-)](0) = b, for all 0< |u|<J,
and [ satisfies the moment conditions of order J+ 1 in (3.3) with respect to y.
Moreover, without the requirement that D'[ $(-)f(-)](0) = b, for all 0<|u|<J, the
shifts of f can be linearly independent.

Proof. By Proposition 2.4, it suffices to prove the claim for (&) = [,(£),0, ...,0]
with y;(0) = 1. It is well known [9] that there is a univariate compactly supported
orthogonal (r 4 1)-refinable function ¢ e C/(R) and there exist compactly supported
C’ wavelet functions V, ..., ¥, such that {¢p(- — B),y;(- — B): j=1,...,r; feZ} is
an orthogonal system. By Proposition 3.2, ¢(0) =1 and D"¢(2nf) =0 for all
0<u<J and pe2\{0}. Now we take the tensor product in R’. So, we have an
(r + 1)I;-refinable function ® and wavelet functions ¥y, ..., ¥ (..1y_ such that their
shifts are orthogonal. It is clear that ®(0) = 1 and D*®(2nf) = 0 for all |u|<J and
peZ"\{0}. Let ¢p = 1 and recursively define

|

! o (NG
b= 3 ey DT ROON0,  0<l <.
o<sv<u

By Lemma 3.4, there exists ce/y(Z*) such that ¢(0) =0, D*é(0)=c, for all
0<|u|<J and [|é(-)]], <1/2. Now define fi by /i (¢) = (I + &(&))b(¢) and f; = ¥,
for all j =2, ...,r. By the Leibniz differentiation formula, it is easy to see that f is
desired since 1+ ¢(&)#0 for all éeR® and {®(-—f): peZ’}u{fi(- —pB):j=
2,...,r; f€Z°} is an orthogonal system and therefore stable. O
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We observe that the function vector f in Proposition 3.5 can also be constructed
similarly from other suitable scalar refinable functions such as the B-spline functions
using biorthogonal bases rather than orthogonal bases.

For aeZ® and teR’, we define

Voo =v—uv(- —a),
VS =f = f=1), velto@)™", fe(Ly®)"™". (3:8)

For u= (uy, ..., ;) eNg, V" == Vi1... Vs, where ¢; is the jth coordinate unit vector
in R®. Note that V*v = V*oxv and V, f = V,0 * f for aeZ°.
Following the lines developed in [18], in the rest of this section we investigate

the mutual relations among the initial function vectors in a vector cascade
algorithm.

Theorem 3.6. Let ye(£o(Z*))"" such that $(0)#0. Let f be a compactly supported

function vector in (LP(RS))FXI, where 0<p< oo. Then for any nonnegative integer k,
the following statements are equivalent:

(D) D (A (2rp) = 0 for all BeZ* and pe N} with |u| <k;

() > per PB (- = B) =p*f =0 for all pe Py, where Py, is defined in (2.15);

() For some positive integer Ny, f = Z]N:fl v; * g; for some compactly supported
Sunctions gje L,(R*) and some vie V", where 'y, is defined in (2.14);

@ f=>,. B, V¥ Go for some compactly supported functions g, € L,(R*), where %y,
is defined in (2.16).

Proof. By Proposition 2.4, it suffices to prove the claim for the case y(¢) =
[71(€),0, ...,0]. For this special y, we observe that 2, = {[p,0, ...,0]: pell;} and
Py =V ko % (Lo(2))" V%

Let g be the first component in the vector f. Since ¢ is compactly supported, the
linear space span{g(- — B)yo,: f€Z'} is finite dimensional. So pick up a basis
g1, .-+, gn for this space from the set {g(- — B)yp,: f€Z'}. Then the function g can

be uniquely written as the following finite sum g = ZJALI v; * g; for some v;e/¢(Z°%).

By a simple computation, it is easy to verify (see [18, Theorem 1] for more detail) that
Zﬁezdp(ﬁ)g(- — p) =0 for all pelly if and only if vje ¥y s forallj =1, ..., N. Note
that for this particular form of y, (1) is equivalent to D*§(2=f) = 0 for all |u|<k and
feZ®. This completes the proof. [

There is a similar result of Theorem 3.6 on sequences [15]. For be/y(Z%),
D*b(2nB) =0 for all |u|<k and pe(MT)'Z* if and only if b(&) =

Z|m:k+1€#\5(MTf)ﬁu(5) for some w,e/y(Z°), or equivalently, 5(5)22&1

G(MT &Y€) for some N,eN and some sequences v;e” s and u;elo(Z°) for
Jj=1,..., N,
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As a direct consequence of Theorem 3.6, we have (see [18, Corollary 2.2]) the
following result.

Corollary 3.7. Let ye(£o(Z°))"™" such that y(0)#0. If f,g€ F .y, where Fy,, is
defined in (3.5), then

D!'g = DMf + Z v*hy,, and

y Y
VERB)y

DHf = Z vx Hy, Vu|<k, peNj (3.9)

VERB -1,y
Sor some compactly supported functions hy,, H, ,€ L,(R®), or equivalently,
(®/D|®g=[®/D|®f+ Y vihy, and
veR;y

(®@/D|®f = Y vHy, j=0,..k

eRB:
LG,J,,U,

Ixs/

for some compactly supported function vectors hj,, H;, € (L,(R"))

4. Convergence of vector cascade algorithms in Sobolev spaces

In this section, we shall characterize convergence of a vector cascade algorithm in
a Sobolev space and we shall settle the question Q2 in Section 1. Before proceeding
further, let us introduce a very important quantity. Let ¢ be a matrix mask with

multiplicity r. For any ye (/(Z*))"" such that $(0)#0, we define

. 1
pila, M.p.y) = sup{ lim la,ol|" . i ve ¥ iy} I<p<om,  (41)

where a, is defined in (2.7) and ¥7 , is defined in (2.14). Let %, be defined in (2.16).
By Proposition 2.4, we see that

: I
prla, M,p,y) = max{ Jim -l | I ve,%c,y}

(4p(2%)
since %y, generates ¥k, and ||a, * (v(- — ﬂ))||(/[)(zj)),ﬂx1 = ||a, * v||(/p(z,§))rx1 for all
peZ’. Define
pla,M,p) =inf{p,(a, M,p,y): (2.8) and (2.9) hold for some
keNy and some ye(/o(2°))"" with $(0)#0}. (4.2)

We define the following important quantity:
vp(a, M) = —log,[ldet M|' " p(a, M,p)], 1<p< 0. (43)

The above quantity v,(a, M) plays a very important role in characterizing the
convergence of a vector cascade algorithm in a Sobolev space and in characterizing
the L, smoothness of a refinable function vector.
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The quantity p,(a, M,p,y) defined in (4.1) can be rewritten using the /,-norm
joint spectral radius. Let .o/ be a finite collection of linear operators acting on a
finite-dimensional normed vector space V. For a positive integer n, /" denotes
A" ={(A4y,...,4,): A, ...,Aye o/}, and for 1 <p< oo, we define

el = > Al
(A1) e s”
and
||.o/"||,, = max{||4,---A,|| : (41, ..., An)EAL"},
where || - || denotes any operator norm. For 1<p< o, the /,-norm joint spectral

radius of </ (see [4,11,15,21,25,31,46] and references therein) is defined to be
— . n l/n o n l/ﬂ
pp() = lim [.o/"[]," = inf [l.o2"]],". (4.4)

Let I'jys be a complete set of representatives of the distinct cosets of Z*/MZ°. To
relate the quantity p;(a, M,p,y) to the /,-norm joint spectral radius, we introduce

A (eeTy) on (£6(2°))" by

Ap(o) =Y a(Mo—B+e)(p), ve(lo(Z)™, xeZ". (4.5)
pez*

It was proved in [21, Lemma 2.3] that if « is finitely supported, then for any finitely
supported sequence v on Z°, there exists a finite-dimensional subspace V(v) of

(¢6(2*))" such that ¥ (v) contains v and V' (v) is the smallest subspace of (Z(Z*))""
which is invariant under the operators A, eeI' ). We call such 7 (v) the minimal
{4,: eeT"y} invariant subspace generated by v.

Let o/ == {A,|: e€I'y} where W is the minimal {4,: ¢eI")/} invariant subspace

generated by a finite subset # of (Zo(Z°))”'. By [21, Lemmas 2.2 and 2.4], there
exists a positive constant C such that

C_1||&i”\|p<max{||an * UH(/p(Z:))rxl: veB}<C|["||, VneN. (4.6)
Consequently, when % = %y, pi(a, M, p,y) = p,(«/). Moreover, since
[det M"VP VD] < o], <",
(see [21]) for 1<g<p< oo and neN, it follows that
[det M|V py(a, M. p,y) < pya, M4, )
< ppla,M,p,y), 1<p<g<oo, keN.
In other words, we have
vpla, M)=vy(a, M)= v,(a, M) + (1/q — l/p)logp(M)|det M,
1<p<g< o. (4.7)

Now we have the following result which generalizes [18, Proposition 2.7].
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Proposition 4.1. Let M be an s X s dilation matrix. Let a be a finitely supported mask
on Z° with multiplicity r. Let vy, ..., v5 € (ZO(ZS))’X]. Then for any p>0 and 1 <p< o0,

hm p"lan vl , ey =0 V=1, (4.8)

if and only if there exist 0< py<1 and a positive constant C such that
[lan = vl , )y SCp "oy VneN,j=1,...,J. (4.9)

Moreover, assume that (2.8) holds for some keNg and ye (£o(2*))"" with $(0) £0. If
span{d;(2nf): j=1,...,J} = C™! for all fe(MT)"'7\Z° and (4.8) holds with p =
|det M| 171/pp(M)k, then the mask a must satisfy the sum rules of order at least k + 1 in
(2.9) with the sequence y. In particular, if p,(a, M, p, ) < |det M|1/p71p(M)7kfor some
1<p< o0, jeNg and ye (£/o(Z°))"" with $(0)#0, then a must satisfy the sum rules of

order k + 1 in (2.8) and (2.9) with the sequence y, and one must have j=k and V' j =
Y ey

Proof. Let us use a similar technique as in the proof of [18, Proposition 2.7]. With
the help of /,-norm joint spectral radius and the relations in (4.4) and (4.6), we see
that (4.8) is equivalent to (4.9).

Denote N := MT. Suppose that « satisfies the sum rules of order L in (2.8) and
(2.9) with y for 0<L<k + 1 (Obviously, it is true when L = 0). By (2.8), for all
BeN~'7°\7° and |u| = L, by induction we have

DH[Y(N™)n(-) () (2np) = D*[ (N-)a(-)g;(-))(27p)
= D*[J(N-)a(-)](2np)5; (2mp),
where in the last identity we used the induction hypothesis D[ (N-)d(-)](2nf) =0

for all [v|<|u| = L and e N~'Z°\7*. Using the same technique as in the proof of [18,
Proposition 2.7], one can show that (4.9) implies that for fe N~'Z°\7* and |u| = L

lim DU (N )a()) ()i (2np) = Tim DU F(N")a,()5()](2nf) = 0.

Since span{7;(2nf): j=1,...,J} = C™! for all BeN~'7°7°, we see that
D[ H(N-)d(-)](2nB) = 0 for all |u| =L and BeN~'Z°\7°. By induction, a must
satisfy the sum rules of order K+ 1 in (2.8) and (2.9) with y.

When p;(a, M, p,7)<|det M|VP"'p(M) 7, by Proposition 2.4, we see that
span{i(2nf): ve B;;} = C™! for all fe N~'Z*\Z*. So a must satisfy the sum rules
of order k+ 1 in (2.8) and (2.9) with the sequence y. By (2.8), we have
DH[p(N")d,(-)3(-)](0) = D*[ ¥(-)3(-)](0) for all |u|<k. By (4.9), we conclude that

DA[()6())(0) = lim DU[J(N")dn(-)d(-)](0) = 0 V|u[<k,ve? ;.

Therefore, by the definition of ¥, ¥ =7 7,. In the following, we show that

Y 5S Y k, implies that j>k and ¥"; ; = ¥ ,. By Proposition 2.4, we can assume
that $(¢) = [1(€),0, ...,0] with §;(0) = 1. So ¥y =¥ ks x (/o(2)" V! Tt is
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trivial to see that {[v,0,...,0]": ve ¥ 5} =77, %, and therefore, 757 5.
Hence, we must have j>k.
Denote [ (), ..., 5,(&)] = $(&). In the following, we show that

$1(0)#0 and D"5,(0)=0 V|ul<k, /=2,...,r. (4.10)

Suppose that J,(0) 0 for some 2</<r. Say, J»(0)#0. There exists v; €/¢(Z*) such
that

D*3(0) = =D"[71(-)/72(1)1(0)  V|ul </,
that is,
D[ 31() + 62()32()](0) = 0 V|u|<).

So [0, 12,0, ..., O]T €737k, which is a contradiction since o ¢ " 5. Therefore, we
conclude that J,(0) = 0 for all # =2, ...,r. Since y(0)#0, we must have 7,(0)#0.
Since 7, (0) #0, there exists v; €/o(Z*) such that

DB ()71() +72()](0) =0 V|u| <) (4.11)

So, [v1,0,0, ...,O]Te"V”jJ;g“/k’y which implies v; € ¥ s; that is, D"(0) = 0 for all
|u| <k. Since j =k, it follows from (4.11) that

A

D"$,(0) = —D"[6;(-)71()](0) = 0

for all || <k. Similarly, we can prove that D*3,(0) = 0 for all |u|<k and / = 2, ..., r.
So, (4.10) holds. Now it follows directly from (4.10) that ¥ 5 = *"4,. 0O

By a similar argument as in [19, Theorem 3.1], if a satisfies the sum rules of order
k + 1 with some ye (/o(Z*))"", then

pi(a, M, p,y) = max{p,(a,M,p,y), |det M|"""'p(M~")/""}

for all I<p< oo and 0<j<k.
In order to investigate vector cascade algorithms in Sobolev spaces, we need the
following result which is essentially known in approximation theory (see Jia [27] and

of. [6)).

Lemma 4.2. Let M be an s x s isotropic dilation matrix. Let g be a compactly
supported function in WFk(Rs) (when p = o0, replace W;)‘([R{S) by CK(R%)) such that
§(0)#0 and D"§(2np) =0 for all |u|<k and BeZ*\{0}, then for any compactly
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supported function f € WII,‘ (R,

inf || f =" o(B)g(M"-—PB)
UE/()(Z) /)’EZS )
L,(R*)
—n\k 1 —n
<Cp(M™) E wp(DYf,p(M™")) VneN,
peNg,|ul=k

where C>0 is independent of [ and n, and w,(f,h) = supy <, [/ =/ = DL @),
h>0.

Now we have the main result in this section which characterizes the convergence of
a vector cascade algorithm in a Sobolev space in various ways.

Theorem 4.3. Let M be an s X s isotropic dilation matrix and I y; be a complete set of
representatives of the distinct cosets of Z°/MZ°. Let a be a finitely supported matrix

mask on Z° with multiplicity r. Assume that there is a sequence y € (£o(Z°))"" such that
7(0)#0 and (2.8) holds for a nonnegative integer k. Then the following statements are
equivalent:

(1) For every feFy,,, where F ,, is defined in (3.5), the cascade algorithm with
mask a, dilation matrix M and the initial function vector f converges in

(W"(Rs))”l' that is, O \f (neN) is a Cauchy sequence in the Sobolev space
(WEE)™

(D For some feF,, (When p= o, f is required to be in (C*(R*))™")
such that the shifts of [ are stable (the existence of such an initial

function vector [ is guaranteed by Proposition 3.5), the cascade algorithm with
mask a, dilation matrix M and the initial function vector [ converges in

(WE(R))™;

) lim,_, 5, |det M|V o(M)Y™||a, U||(/p(zy>>r><l =0 for all ve By, where a, is
defined in (2.7) and By, is deﬁned in (2.16);

) lim,_, ., [det M|"P" o (MY™||a, Ol 2oy = 0Jor all €Yy, where V' is
defined in (2.14);

() py(a, M, p,y)<|det M|1/1’71,0(M)7k7 where p,(a, M, p,y) is defined in (4.1);

(6) p,(a, M, p,y)<|det M|1/”_1p(M)_k and the mask a satisfies the sum rules of
order k + 1 in (2.8) and (2.9) with the sequence y;

(D pla, M, p)<|det M|"?~ p(M)™*, where p(a, M, p) is defined in (4.2);

(8) vy(a, M) >k, where v,(a, M) is defined in (4.3);

) pp,({Aely: e€lar}) <|det M| o (M) 7F | where the operators A, are defined in
(4.5) and W is the minimal {A,: ¢€Uy} invariant subspace generated by
{v: ve By, };
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(10) "k, is invariant under all the operators A,, e€I'y and

i g€y }) < |det M|V (M) 7,

Pp el o my
where K =7°n Y7 MKy and
Ky ={0,0eZ% a(a)#0} — Ty + {aeZ’: |a|<1}.

Moreover, any of the above statements implies that (3.1) holds and there is a unique
compactly supported function wvector (;’>e(W1;‘([RiS))er such that y(0)$(0) =1,
H(MTE) = d(&)(¢) and lim,,_, ., 110% af — ¢||(WF,((R:)),.X| = 0 for every initial function
vector f € F iy p-

Proof. Obviously, (1) = (2). Suppose (2) holds. By Proposition 2.4, without loss of
generality, we assume ¥(¢) = [1(¢),0, ..., 0]. Let f, = 0} ,,f. By assumption in (2),
limy s oo [1fn = oo |l gy ey = 0 for some fop e(W]’,"([R{S))"X]. When p = oo, we must
P
have f., €(CF(R*))™" since fe(C*(R*))™'. Let m = |det M|. By induction, f, =
m" 3 g an(B)f (M" - —P) for all neNy. Therefore, for u= (u, ..., 1) €NG, we
have
Vs, =t S (VR (B) (M - —f)  with
pez*

VA = Vi, YneN. (4.12)

ne :

Since the shifts of /" are stable, by (4.12), there exists a positive constant C depending
only on f such that

| g, g S CIV oo Nl g eyt + CUVH (o = Fo )l g ey

Note that all the functions f, and f,, are supported on [—L, L]’ for some integer L
independent of n. Since M is isotropic, there is a constant C; independent of n such
that

IV (fa = S )l gy eyt S Com™" Pl o = Foo eyt VIl = K+ 1.

Since f., € (W"([Ris))er or o €(CK(R*))™! when p = o0, we deduce that lim,_, .,
”"/s||V””fv|| pa =0 for all [uf=k+1. By assumption lim,_ ||f,—

foc|| W)™ = 0 we have

lim m" K11 |y, e,y =0 Viul=k+1, neNg.

n— oo

Note that V*a, = a, x V*dI,. Since [an x VF(de)] () is the first column of [V*a,](f),
in particular, we have

lim "D (g, 5 T ()] 4, zryyer = 0

n— oo

Vil =k+1,ueNs. (4.13)
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Denote g :=elf to be the first component of f. Since we assume that y(&) =
[51(£),0,...,0] and f satisfies the moment conditions of order k£ + 1 with respect to
y, we have ¢§(0)#0 and D"§(2np)=0 for all |u|<k,peZ’\{0}. Since
fne(W;‘(RS))"Xl, by Lemma 4.2, there exists v, € (/o(Z*))"™" such that

e 3 s(Bg(M" - ~p)

pe’

(Ly(®))™!

<Cm™"™P 3" w0, (D fo (M), (4.14)
|ul=k

where C is a constant independent of f,, and n. Denote

Gn=Lo—m" D> va(Blg(M" - —B) =m" Y (an— [0,0, ..., 0))(B)f (M" - —P).

pez* pez
Since the shifts of f* are stable, there exists a positive constant C; such that
D — (6,0, o0, O]l e < Com™ I gall . oy
< CCr Y p (D p(MT)).
|ul=k
By the triangular inequality and the fact |u|<k, we have
p (D", p(M ) <D, oM ™)) + 2o = oo s -

Since D“f,, e(L,(R*))”™" (when p = co, D'f, e(C(R*))™"), it follows from the
above inequality that lim,_, ,, w,(D"f,, p(M~")) = 0. Consequently,

Jim k512101 q, — [0, 0, ey Ol g, 2oy = O

Since [ay, * (d¢;)](f) is the jth column of the matrix (@, — [v,,0, ...,0])(f) for j =
2, ...,r, in particular, we have

i n(k/s+1=1/p) . = -
nlin; m [|lan * (5e])|\(/p(15)),x1 =0 Vj=2,..,r (4.15)
Since {V*(der1): |u|=k+1}u{oe;: j=2,...,r} =%, and p(M)= |detM|1/S,
2) =)

(3) = (4) = (5) are trivial. By Proposition 4.1, (5) implies that «a satisfies the sum
rules of order k + 1 with y. So (5) = (6). By the definition of p(a, M, p) and v,(a, M)
in (4.2) and (4.3), it is obvious that (6) = (7) and (7)< (8). The equivalence
relations between (6), (9) and (10) are standard results on /,-norm joint spectral
radius.

In the following, we show that (6) = (1). Since a satisfies the sum rules of order
k+1in (2.8) and (2.9) with y, by Quuf (&) = d(MT)'EA(MT)™'¢), it is easy to
verify that Q, »f also satisfies the moment conditions of order k + 1 with respect to
y. By assumption in (6), there exist two constants 0<p<1 and C>0 such that

llan ol 291 < Cm" VPN (M) " Yoe By, neN. (4.16)
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Let g == Quuf — f. By Corollary 3.7, we have [®*“D|® g = ZUE%M v * hy, for some
compactly supported /., € (L,,([RES))IXSk. Since
Joit —Jo = Qa9 =m" ) an(Pg(M" - —f),

pez’
by Proposition 2.1, we have

(@ DI® [frs1 —ful =m" Y au(H)([®FD]@g)(M" - —p)(®"M")

pez®
=m" NN [+ o] (B (M" - —B)(®FM").
ve By, pel’

Since p(@*M") = p(M)*" <[p(M)*p="/%)" and all hk7ve(Lp(R“'))lx‘Yk are compactly
supported, there exist positive constants C; and C, such that

@ DI®for1 — /i

K

Mg, ey

<Cu"(p(M)p™ 2"\ Y Dl * vl (B)heo(M" - =)

veRBi, PeZ’ Je

(Lp(R)™
< CLCm" 1P p(pp)F p 1/ Z ||a,1>z<v|| 77y
vE By

It follows from (4.16) that

I®*DI® [fri1 — 1

Wl g, oy SCOCa(#Biy)p"? IneN.

Thus, [®*D]®f, is a Cauchy sequence in (L,(R® ))’” since 0 < p < 1. Note that all f,,
are supported on a fixed compact set. Therefore, we must have

Jim (190w = Fooll ey = Hm1fo = Fooll gy ey = 0

for some f, e(I/V/f(RS))m. When (3.1) holds, we must have f,, =¢ and
consequently, f,, = ¢.
Finally, we show (7) = (2). By definition of p(a, M, p) in (4.2), we have

p.(a, M, p,3) <|det |7~ p(a)~*

for some J e Ny and ye (£o(2*))"" with 7(0) #0 such that  satisfies the sum rules of
order J 4+ 1 but not J + 2 in (2.8) and (2.9) with . By Proposition 4.1, J>k and
Y k5 = ¥ ky. By Proposition 3.5, there exists a function vector f'e (€’ (R*))™! such
that all the claims in Proposition 3.5 hold with y being replaced by y and b, =
o(u), |u|<J. Since ¥ty = 7"k,, by Lemma 3.3 and appropriately scaling f* by a
scalar constant, / must satisfy the moment conditions of order k 4+ 1 with respect to
y. So f is a suitable initial function vector in (2). Since a satisfies the sum rules of
order J + 1 with y, it is easy to check that Q, Mf satisfies the moment conditions

of order J+ 1 with respect to y and DH[y ()QaMf( )](0) = d(u) for |p|<J. Let
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g = Quuf —f. Now it is easy to verify that for every |u|<k, D'[5(-)d(-)](2nB) =0
for all |v|<J and feZ°. By Theorem 3.6, Dig = Zve%_fu s« hy,, || <k for some
compactly supported functions /4, , € L,(R*). Now the same argument to show (6) =
(1) yields that the sequence Q7 ,,f converges in (W;‘(IRS))"XI. So, (2) holds. O

A comprehensive study of stationary cascade algorithms was given in [3]. For
r =1, convergence of scalar cascade algorithms was given by Jia [25] in L,(R) with
M =2, by Han and Jia [21] in L,(R*) with a general dilation matrix, by Lawton et al.
[34] in Ly(R*) with M = 21, by Jia et al. [29] in W§(R’) and [19] in W} (R*) with an
isotropic dilation matrix. For the general case r> 1, convergence of vector cascade
algorithms was investigated by Jia et al. [31] in L,(R), by Shen [43] in L,(R*) with
M = 21, by Goodman and Lee [13] in W} (R), by Micchelli and Sauer [39] in W} (R)
and [40] in W;‘(RS), and more recently by Chen et al. [4] in W;‘(Rs) with an isotropic
dilation matrix (which establishes the equivalence between (1) and (10) in Theorem
4.3), as well as by Li [35,36] and by Zhou [47], and by many other related references
in the above papers.

With the help of Propositions 2.1, 2.4 and Corollary 3.7, the proof of Theorem 4.3
is relatively simple and gives us a better picture and understanding of vector cascade
algorithms; moreover, we have a clear description of and relation among the set
Z 1.yp of initial function vectors, the polynomial space #; , and the subspace ¥ , of
(/o(Z‘V))”l. The statements in (2), (3) and (8) of Theorem 4.3 are new. In particular,
(2) settled Q2 in Section 1. The basis %y, for the space ¥, was first introduced here
to characterize the convergence of vector cascade algorithms. The characterization in
(8) connects the convergence of a cascade algorithm with the smoothness of the
refinable function vector and avoids the explicit appearance of the sequence y and
the integer k in the quantity v,(a, M) for the characterization in (8). From the proof
of Theorem 4.3, we see that without assuming that M is isotropic, the statements
(3)—(10) are equivalent to each other and any one of them implies (1). In fact, in the
above proof, (2) = (3) is the only place where we need the assumption that M is
isotropic. More technical argument shows that Theorem 4.3 holds when M is a
dilation matrix with all its eigenvalues having the same modulus.

The L, smoothness of a function f'e L,(R®) is measured by its L, critical exponent
vp(f") defined by

wp(f ) = sup{n+vi [ID'f = DU (- = 1)l oy G/l Vil = mre R},

When /= (fi,....,)", vo(f) =min{v,(fj): j=1,...,r}. The same proof of
Theorem 4.3 to show (2) = (3) and [16, Theorems 3.1 and 3.3] yield that
vp(¢)=vy(a, M). Moreover, when the shifts of ¢ are stable, then one has (see [§]
forp=2andr=1)

In p(M)

vp(a, M) <v,(¢) <vp(a, M) W
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In particular, when M is isotropic, then v,(¢)=v,(a, M). For discussion on
smoothness of refinable functions and refinable function vectors, see [7,8,11,
16-18,21,26,28,32,33,38,42,44] and many references therein.

In the rest of this section, let us discuss the rate of convergence of a vector cascade
algorithm.

Theorem 4.4. Let M be an s X s isotropic dilation matrix. Let a be a finitely supported
matrix mask on 7° with multiplicity r. Let J be the largest integer that is less than
vp(a, M); therefore, by Theorem 4.3, a satisfies the sum rules of order J + 1 in (2.8) and
(2.9) with a sequence ye (£o(Z*))"". Let f e( W;‘([Rs))rXl satisfy the moment conditions
of order J + 1 with respect to y and D[ 3(-)f(-)](0) = () for all |u|<J —k (the
existence of such an initial function vector [ is guaranteed by Proposition 3.5). If
vp(a, M) >k, then the cascade algorithm associated with mask a, dilation matrix M

and the initial function vector f converges in (W/f (IRS‘))er and for any
0<p<p(M) "M there exists a positive constant C such that

||QZMf - ¢||(W]§c(RS))"X1 <Cp",

\ouf — Qi Il s eyt S2Cp" VneN, (4.17)

where ¢ is the unique M-refinable function vector satisfying p(MTE) = d(&)d(&) and

7(0)p(0) = 1.

Proof. By v,(a, M)>J and Proposition 3.1, (3.4) holds with k being replaced by J.

So, by J=k, D[3()b()](0) = () = D[ F()A-))(0) for all [u|<J — k. Now it is
easy to check that for all |u| = k,

D'[y()DH[f = @] (-)](2mp) = O
for all |v|<J and feZ’. By Theorem 3.6, for every |u| = k, we have
D —gl= 3 vehy,

vER)y

for some compactly supported £, , € L,(R*). Now the rest of the proof is identical to
that of Theorem 4.3 to show (6) = (1). O

5. Refinable Hermite interpolants

As an important family of refinable function vectors, refinable Hermite
interpolants are useful in computer-aided geometric design [12,17,23,37,45,47]. In
this section, we shall give a simple criterion to characterize a refinable Hermite
interpolant in terms of its mask and consequently we settle the question Q3 in
Section 1.

As a direct consequence of Theorem 4.3, we have the following result which
generalizes [21] and was also independently obtained in [6].
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Corollary 5.1. Let M be an s x s isotropic dilation matrix and a be a finitely supported
mask on 7° with multiplicity r. Let ¢ be a nonzero compactly supported M-refinable

function wvector with mask a. If qﬁe(W]ﬂc (IRS))"Xl (when p = o0, we require
de(CH(R))™") and the shifts of ¢ are stable, then vp(a, M) > k; that is, the vector
cascade algorithm associated with mask a and dilation M converges in the Sobolev
space (Wp"([RRS))"X].

Proof. By Proposition 3.1, (3.4) and (2.8) hold for some ye (£o(Z*))"*" with $(0) #0.
Item (2) in Theorem 4.3 is satisfied by taking f = ¢. The claim follows directly from
Theorem 4.3. [

Let us recall the definition of Hermite interpolants given in [17,23]. Let A, =
{neNj: |u|<r} and by #A, we denote the cardinality of the set A,. Now the
elements in A, can be ordered in such a way that v= (v, ...,v,) is less that pu =
(#15 +oo, ) if either |v[<|u| or when |v| = |u|, v; = w; for j=1,...;i— 1 and v; <y,
for some 1<i<s. Let ¢ = (¢,) 5, be a column vector of functions on R*. We say
that ¢ is a Hermite interpolant of order r if ¢ e (C"(R*))#*)*! and

[D'¢,J(x) = o(p —v)o(x) Vu,veA,, ael’. (5.1)

Let 2/ be defined in Proposition 2.1. In other words, (5.1) is equivalent to saying
that

1,2,2°, ..., 2" Q@ ¢(x) = 5(2)Iya, VoeZ’.
The definition of a Hermite interpolant can be generalized by replacing A, by a finite
subset A of Nj such that 0<<v<pue A implies ve A. Note that (v, ..., vs) <(uy, ..., &)
means v;<y; for all j=1,...;s. This general definition of Hermite interpolants
includes the family of tensor product Hermite interpolants.

The following result gives us a simple criterion to characterize a multivariate
refinable Hermite interpolant in terms of its mask.

Corollary 5.2. Let M be an s x s isotropic dilation matrix and a be a finitely supported
mask on Z7° with multiplicity #A, for some reNy. Let ¢ = (d),u)p.e/\, be a compactly
supported M-refinable function vector with mask a and dilation M ; that is, (ﬁ(M ey =
A(&YP(E). Then ¢ is a Hermite interpolant of order r if and only if

(1) (;30(0) =1 (this is a normalization condition for a refinable function vector);
(2) vo(a,M)>r (In particular, the inequality vy(a,M)>r+s/2 implies

Voo (@, )>V)
3) a(O) S(M~1A,)/|det M| and a(MB) = 0 for all BeZ°\{0}, where the matrix
S(M~ I,Ar) is deﬁned 1o be
(M x)" x'

=Y S(M ' A) #"W’ LEA,: (5.2)
veA,
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(4) The mask a satisfies the sum rules of order r + 1 in (2.8) and (2.9) with a sequence
ye(/o(Z“))lx#A" such that
(=iD)"
u!

where e, denotes the uth coordinate unit vector in R#M).

JO0)=eyp, |pl<r, peNg, (5.3)

Proof. Let m := |det M|. Suppose that ¢ is a Hermite interpolant of order r. Then
d)e(C"([RiS))<#A I and the shifts of ¢ are stable (in fact, linearly mdependent) By
Theorem 4.3, v, (a, M) >r. So, (2) holds. From the refinement equation ¢(M~!.) =
m > .z a(B)p(- — B), by Proposition 2.1, for j =0, ..., r, we have

(27 @¢I(M™")S(M™',0) = 77 ® ¢ =m Y a(p)Z7’ @]~ p).

pez’

Note that S(M~',A,) = diag(S(M~',00),S(M~',0y), ...,S(M~',0,)). It follows
from the definition of a Hermite interpolant of order r in (5.1) that for any ae Z°,

S()SM™ A /m=1,2, ..., 7" @p(x)S(M~", A,)/m
=> aB),2, ..., 7' 1@ (Mo — p) = a(Mx).

fez’

So (3) holds. Since ¢ is a refinable Hermite interpolant, by Proposition 3.2 and
Theorem 4.3, we must have (p x y) x ¢ = p for all peIl, and a satisfies the sum rules

of order r + 1 in (2.8) and (2.9) for some sequence ye (ZO(Z“'))IX#A". By (2.13),

pen=o =3 ) 2506 gy =p e, (5.4)

Hen,

Since ¢ is a Hermite interpolant, by (5.4) for all peIl, and e Z*, we have

1.7 7 1©p0 = S D9p) LSO, . T @ b0 )
HEA,
=3 Dyl ’D) 2 500).
HeEA,

It follows from the above identity that the sequence y must satisfy (5.3). So, (4)
holds. In particular, from (5.4), we have 3 ;s ¢o(- — ) = 1 and therefore, $o(0) =

1. So, (1) holds.
Conversely, it is known [17] that there is a 2-refinable function vector

Y e(C(R)" V! which is a Hermite interpolant of order r whose mask is supported
n [—1,1]. Such ¢ is in fact a B-spline function vector with multiple knots. Define a
function vector f by

f(,ul-,...‘us)(lh ---atS) = lﬁul(l‘l)"'l//m(ls), (:ul7 ---nu.v)EAr'
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It is easy to verify that f is a Hermite interpolant of order r and (5.4) holds
with ¢ being replaced by f and with the sequence y in (4). So f satisfies the

moment conditions of order r + 1 with respect to y. Note that (1) implies y(0)¢(0) =

~

$0(0) = 1. By Theorem 4.3, it follows from (2) and the fact $(0)$(0) = $(0)A0) = 1
that the cascade algorithm associated with mask a, dilation matrix M and the initial
function vector f converges to ¢ in (Cr(RS))(#A")XI. Let f, == Q) ,,f. By Proposition
2.1 and fu(M™") =m" 3 g 7 an(B)f (- — B), since [ is a Hermite interpolant, we
observe that

(L2, .. Z1®f)(@)SM " A) =m" Y 1,7, ..., 7| ®f (M"s— )

pez’

=m"a,(M"a).

By a(MB)=36(B)S(M~',A,)/m for all BeZ', by induction we see that
a (M"B) = 6(B) [S(M~,A)]"/m" for all Bez'. Observing S(M"A,)=
[S(M~1,A)]", we conclude that [1,2, ..., 2"|®f,(«) = d(x)I4a, and therefore, f,
must be a Hermite interpolant for all n. Consequently, ¢ must be a Hermite
interpolant of order r since D¢, (2) = nlingo D'[f] (o) = 6(p — v)o(a) for all p,veA,

and ez, O

Univariate refinable Hermite interpolants have been studied in [12,17,37,45,46].
We say that a mask a is a Hermite interpolatory mask of order r with respect to the
dilation matrix M if (3) and (4) in Corollary 5.2 hold. The concept of Hermite
interpolatory masks in the univariate setting has been introduced in [17] and a family
of Hermite interpolatory masks of order r with a general dilation factor has been
constructed in [17].

In the univariate setting with M =2, a necessary and sufficient condition
for a refinable function vector to be a Hermite interpolant was obtained in [40].
Our characterization in Corollary 5.2 is much simpler than that of [46] even
for the univariate case. Refinable Hermite interpolants have been also discussed in
[23]. See [23] for construction of multivariate Hermite interpolatory masks with
symmetry.

In the rest of this section, we have the result about the sequence y for a Hermite
interpolatory mask.

Proposition 5.3. Let M be an s x s dilation matrix. Let a be a finitely supported mask
on 7° with multiplicity #A, such that a(0) = S(M~',A,)/|det M| and a(MB) = 0 for
all peZ7*\{0}. Suppose that a satisfies the sum rules of order k + 1 (k>=r) in (2.8) and

(2.9) with some sequence ye(KO(ZS))IX". Let ¢ = (04, ...,05), where a1, ...,0, are all

the eigenvalues of M. If o ¢ {a": ve A, } for all r <|u| <k and pue Ny} (this clearly holds
when M is an isotropic dilation matrix), then we must have D"y(0) =0 for all
r<|u|<k.
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Proof. Denote y, = (—iD)"(0)/u! and J(u) = |det M|, ;s a(oe+ MB) (M~ o+
B)*/u!. Using the Leibniz differentiation formula, the definition of sum rules in (2.8)
and (2.9) can be equivalently translated into [17]

ST =Dy = D S(MTL 0, YueAy, aeZ’ (5.5)
057 E=r

Since a(MB)=d(B)S(M~',A,)/|det M| for all BeZ', we have Ji(u)=
(p)S(M~' A,). Setting o = 0 in (5.5), we deduce that y,S(M~',A,) = »,J5(0) =
Sty S(M™Y, Opy),pv, €Ak, Denote Y, = (y),c0, s @ #0, x #A, matrix.
Therefore, we have Y,S(M~',A,)=SM™',0,)Y, for n=0,...,k which is
equivalent to (S(M~',A)" ®Iuo,)vec(Y,) = (Iun, @ S(M~', 0,))vec(Y,) for all
n=0,...,k. By assumption on M, we see that

SM AN ®ILuo, — Iup, ®S(M',0,)
=[S(M A ®S(M, 0,) — Lun, ®Lyo,][Iun, ® S(M~', 0,)]

is invertible forallm =r+ 1, ..., k. So, we have Y, =0 foralln =r+ 1, ...,k which
completes the proof. [

If a is a Hermite interpolatory mask of order r with respect to a dilation matrix M
and a satisfies the sum rules of order k (k>r) with a sequence y, then (5.3) holds and
(=iD)"$(0) = 0 for all r<|u|<k; moreover, Py, = {(D"p),.,: pellx} and by
Proposition 2.10, Sy ((D¥p),ca,) = (D*[p(M~1)]) e, for all pelly.

6. Error estimate of vector cascade algorithms in Sobolev spaces

In applications, when the coefficients of a mask (such as the Daubechies’
orthogonal masks in [9]) are irrational numbers, one often needs to truncate such a
mask. Heil and Collela [24] studied how such truncation affects a scalar refinable
function in the univariate L., case. Daubechies and Huang [10] studied how
truncation affects the associated scalar refinable function in the univariate L., case
in the frequency domain. Han [14,15] first provided a sharp error estimate for
multivariate scalar refinable functions and for their cascade algorithms with a
perturbed mask in any L, norm. More specifically, it was proved in [14,15] that if a
scalar cascade algorithm associated with a mask a converges in the L, norm, then
there exist two positive constants # and C such that for any mask b such that
|la — bl|,,(z+)<n and b satisfies the sum rules of order 1, one has

Qo — o/ N1,y <Clla—bll,,z) VneN
and

||¢* — ¢b||L,,(R"‘) <Clla— b||/1(z")’
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where f is an initial function in the scalar cascade algorithm, and ¢“ and dbb denote
the scalar M-refinable functions with masks ¢ and b, respectively, with the standard
normalization condition ¢¢(0) = $?(0) = 1.

The main idea in [14,15] was used in [20] to obtain error estimate for vector
cascade algorithms in the univariate L, case, and recently was generalized by Chen
and Plonka [5] to establish error estimates for scalar cascade algorithms in a Sobolev
space with a particular initial function which is the tensor product of a certain B-
spline function. Such a restriction on the initial functions in [5] was completely
removed in [19].

As we shall discuss later, the situation for vector cascade algorithms is much more
complicated. Let a be a finitely supported mask on Z*° with multiplicity ». We denote

by y“e(/o(2*))"" a sequence such that
DAF(MT)()](0) = D'#(0) Viul<k and (0)%0. (6.1)

Note that there are many choices for such a sequence y“. But when (3.1) holds, by
Proposition 3.2, up to a scalar multiplication, there exists a unique sequence
e ((Ax)"", where Ay = {BeNJ: || <k}.

In the scalar case r = 1, by uniformly normalizing y“ by y*(0) = 1, we observe that
the set F ,u, is independent of the mask a since F ya, = Fs,. However, when
r>1, it is not easy to uniformly normalize the sequence y* and in fact # ,. , indeed
depends on the sequence y“ which in turn depends on the mask a. Such difficulty
makes the error estimate in the vector case much more complicated. As a matter of
fact, the error estimate for the univariate vector cascade algorithms in [20] requires
that the perturbed mask satisfy a strict condition which makes such an error estimate
in [20] less useful in practice. It is the purpose of this section to satisfactorily settle Q4
in Section 1 for the vector case in any dimension using the results in previous
sections.

Lemma 6.1. Let M be an s X s isotropic dilation matrix. Let k be a nonnegative integer
and Q be a compact subset of 7° with 0€Q. Let a be a finitely supported matrix mask
on 7° with multiplicity r. We assume that

@) a(B) =0 for all BeZ*\Q; that is, ae (£(Q))™";

(b) 1 is a simple eigenvalue of d(0) and all other eigenvalues of d(0) are less than
p(M)™* in modulus;

(¢) a satisfies the sum rules of order k+1 in (2.8) and (2.9) with a sequence
Y e(fo(2)" and j(0) £0;

(d) p,(a, M, p,y*)<|det M|1/p71p(M)7k; that is, the cascade algorithm associated
with mask a, dilation M and every initial function vector f € F o, converges in
the Sobolev space (W;‘(Rs))”l.

Note that (d) implies both (b) and (c) by Theorem 4.3. Then there exist positive
constants n and C such that for every be Ny, (a,k, M,Q) satisfying V" p = Vi ya, one
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b 1/p—1 —k
has py(b, M, p,y”) <|det M|"""""p(M) " and

n(1 1) —ki
a5 0= by % 0l] . 5oy 1 < Cldet MI™ P p(M) ™ |a = bl 2oy

Voe Br—_1ye, neN, (6.2)

A~

where a, is defined in (2.7) and b,(&) =b(MTY"'E)--b(MTE)B(E). By
beN,(a,k, M,Q) we mean

(1) b(B) =0 for all BeZ*\Q; that is, be (£(Q))™";

@) lla = b,z <m;

() 1 is a simple eigenvalue of b(0) and all other eigenvalues of b(0) are less than
p(M)™* in modulus;

(4) b satisfies the sum rules of order k+1 in (2.8) and (2.9) with a sequence
yhe(to(2)"".

Note that both n and C are independent of b and n.

Proof. Denote m = |det M|. Let A, and B, be defined in (4.5) for the masks ¢ and b
with K defined in (10) of Theorem 4.3 and Ky :=Q —T'y + {eeZ’ |a|<1},
respectively. Denote .o/ := {A8|1/»-k>y“m(/(K))rxl: cely} and 2B =A{B, . x):
eely}. As in [5,14,15,19], there exist >0, 0<p<1 and C;>0 such that for all
beNy(a,k, M,Q) such that ¥ » = /7y e, one has ||%"||, < Cym™"P=1p(M) ™" p for
all neN.

By Proposition 2.4, we assume that y*(&) = [y{(¢),0,...,0] with 3 (0) =1
and by (c), d(¢) must take the form of (2.10) and (2.11). Now by Lemma 3.3
and (3), we see that ¥ » = ¥« if and only if b(&) also takes the form of (2.10)
and (2.11) with « being replaced by b. We observe [5,14,15,19] that for all
ve (4o(2°)™,

[1bn % v — ay, * U||(/p(z,\->)r><]

n 1/p
< Z ( Z ||le "'st,] (st - As,)Ast Asnv| |p rxl) .

Elyeeen €y

Note that ¥ gy =7"ks X (£o(Z N Using  the special form  of  d(¢)

and b(é) in (2.10) and (2.11), by (2.19) and (2.20), we see that
(Bej — AS/)/V]( 1,4 C“ka By PrOpOSitiOH 25, Ang "'Agn,Vk717y“ E/kal’yzr.
Note that ||B; — A;|[<[la — ||,z Now by a similar argument as in [5],
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for ve #y_1 y«, one has
Z Z ||le ”.st—l (B«S/ - AS/)A8/+1 ASnUHP rxl
&iylsestn €l &1,.8 €y
<Clm(/f1)(1717>p(M)*k(Jfl)pp(j71)p||B{‘v — A, |]?
] 7]

X Z ||A€j\1' A«SnUH !

Eilsesn €M

<Calloll, oy i PPN = BIIG, oy o™ P p ()

) 7))

for some constants C; and C, independent of b and n. It follows from the above
inequalities that

[1bn v — ay, * U||(/p(zx>)/><l

n
1/p _ —k
<G N[oly, 2oy P p (M) @ = Bl g e D 07
Jj=1

So, (6.2) holds with C given by

C = " max{|[vl|,, zs): vEBi- lyu}Zp]<OO O
j=0

The following is the main result in this section which settles Q4 in Section 1.

Theorem 6.2. Let M be an s X s isotropic dilation matrix. Under the same assumptions
(a)—(d) on the mask a as in Lemma 6.1. Then there exist positive constants n, Cy, C,
and C; such that

(1) For every initial function vector f € F i ya,,
QoS — Qo | (W (®re))™!
<Cilla =0l @z VneN,beNy(a,k, M,Q) (6.3)
provided that F ., = e/fkyzu,,;
(2) With an appropriate choice for y*, we have
Iy —y || (@) 1x,<C2Ha—b||</] 7y VbeNy(a,k, M,Q); (6.4)

3) pi(b, M, p, ") <|det M|1/”_1p(M)_k; that is, for every mask beN,(a,k, M,Q),
the cascade algorithm associated with mask b, dilation M and every f€ Fy s,
converges in the Sobolev space (W;‘(R“'))Ml;

(4) With the choice y* in (2), let ¢* and ¢” be two compactly supported M-refinable
function vectors such that

U (MTE) = a(e)d (&), 7(0)$*(0) =1
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and

$(MTE) =b(O)P" (&), 7 (0)§(0) = 1. (6.5)
Then ¢° and ¢° belong to the Sobolev space ( W;([Ri‘?))"Xl and one has the
following estimate:

16 = 81y o < Cslla =l e WbEN (@ kM, Q). (66)

Note that all n, Cy, Cy and C; are independent of n and b.

Proof. By Lemma 3.3, F o), = F », implies ¥y o = 47 1p. Since f € F y yap, by
Corollary 3.7, [®*D|®f = > vem . V* Hip for some compactly supported
function vectors Hy , € (L,,(R‘))lxsk. Let m = |det M|. By induction,
ol = O =m" Y (ay— b)) (B (M- —p).
pez’

Therefore, by Proposition 2.1, we have

([®@“DI® Qs if — O ]
=m" > (an—by)(B)([® DI®S )(M" - —p)(®*M")

pez*

Z Z ay * v — by * 0)(B)Hi o (M" - ﬁ)(®an)
VEHB_1y0 P’
Since p(@*KM™) = p(M )k" and all Hy, are compactly supported function vectors in

oy 1k . .
(Lp([R“))lx‘s , there exists a positive constant Cy such that

1@ DI@ QS = Coaa Ml (g
< Comn(l ]/]7>p(M)le Z Han * U — bn * U||(/,,(ZS))"XI .

UEBA»,]Ju
By Lemma 6.1, (6.2) holds. Consequently, we deduce that
I[®“DI®[Q} 1S — Do) Ml 1 oyt < CCOH B0 )lla = bll 1,z

for all neN and beN,(a,k,M,Q) such that ¥ » =7k Since all O} ,,f
and @y ,,f are supported on a fixed compact set, we conclude that (6.3) holds for
some constant C; independent of b and n. In fact, (6.3) holds for every
fG fk,yabp N 9k’yh7p.

In the following, we prove (2)—(4). By Proposition 2.4, without loss of generality,
we assume that (&) = [54(¢),0, ..., 0] with 3¢(0) = 1. Write *(&) = [ (), %(&)].
Since be Ny (a, k, M, Q) implies that 1 is a simple eigenvalue of 1;(0), there is a unique
solution y(0) to the equation 7 (0)5(0) = y(0) with (0) = 1. In fact, y5(0) =

$2(0)b12(0)[,_1 — by2(0)] . Since d(¢) takes the form of (2.10), we have
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p(d22(0)) <1 and d,,(0) = 0. Therefore, 7(0) is well defined since p(hy2(0))<1
when 7 is small enough. Since d;>(0) = 0, by condition (3) in Lemma 6.1,

[15(0) = ¥ (0)[] = [175(0)| < Cl1b1.2(0)]]
= Clld12(0) = b12(0)]| < Clla = bl| s, 22y

for some constant C. By condition (3) in Lemma 6.1, it follows from Lemma 2.2 that
there is a unique solution {D*$"(0): 0<|u|<k} to the system of linear equations

D[y (MT)b(-)](0) = D3 (0) for 0<|u| <k and in fact it is easy to check that there
exists a positive constant Cy independent of b such that

sup ||D*5"(0) — D"#(0)]| < Colla — bl iy VbeNy(a,k, M, Q). (6.7)
ne A
It is well known that there exists a unique y € (/(A))" " such that D*j(0), |u| <k are

preassigned. Choose the sequences 1 and y” in (£(Ay))"*". It follows from (6.7) that
(6.4) holds for some constant C, independent of b.
Let y* be the sequence chosen above with )?’1’(0) = 1. As in the proof of Proposition

2.4, there exists a unique sequence ce(Z(Ar)) "™V such that DrE(0) =
DH[5(-) /71 ())(0) for all |u]<k. So,
sup |[D*é(0)[|<Cy sup [2SHOINE sup 1D"5(0) — D5 (0))|

ue Ny HeAx ek
for some constant C;. Consequently, by (6.7),

lellizyen < C sup [1D5(0) = DFOII<CColla = Bz (68)
k

for some constant C independent of b. Define Ue (¢(Z*))”™" by

oo-[s 7]

Define

A

(&) = UMTE)'BEOUE), (&) =PEUE) and §P(&) = UE) ¢ (),

where ¢ is given in (6.5). Then q@’;(MTi) = 3(5)&(@ and 7(0)¢ ( ) = L. It follows
from (6.8) that there exists a small enough »’ >0 such that be N, (a, k, M, Q) implies
beNy(a,k, M,Q) since

WU = L0l s,y = lell g, zsyyee-n < CColla = bl 7, oy (6.9)

Since D!y}(0) = D“)?;’(O) =0 for all |u|<k and j=2,...,r, using the relation
between b and b, one can easily verify that |ja — b|| e \C2||a bll(s,zyy>r for
some constant C, independent of b. Replace # by the smaller n'. By Lemma 3 3 and
7(0) :)711;(0) =70)=1, F i p = Fkyep- By what has been proved in (1), we
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have the following estimate:
1" = eyt < Culla = Bl 2oy < CrCalla = bl 2oy

and consequently, ||¢”~||(WA,(RJ)).-M <2[|¢l| i (gsyy1 for small enough 5. On the other
P P
hand, since ¢?(&) — ¢*(&) = (U(&) — I,)¢" (&), we deduce that

||¢ (b || WE(RS)) TS ||U 15||(/1 7%) ’X’HQS || Wh(RY)) rx1

< 2CCo|9° sy lla = Bll g, oy

Consequently, taking C; = C,C;, 4+ 2CC||¢“|| (wy!s We have estimate in (6.6)

since

16" = &l oy < 11" ¢HWA m+||¢ = %l ey

< C}Hd - b||(/l(zA))"><)‘.

—k

By Lemma 6.1, we have p, (5, M, p, ") <m!/P=1p(M)™* since ¥ Yk pe. By the

k.y’; =
relation between b and b, it is easy to verify that p, (b, M,p,y") = p, (b, M, p,)").
Consequently, p, (b, M,p,y*)<m'P" 1 p(M)™*. O

The proofs of Lemma 6.1 and Theorem 6.2 yield that lim,, ¢ pe N, (akm.0)Vp (b, M) =
vp(a, M) which is not a trivial fact since the space ¥"; ,» in the definition of v,(b, M)
changes with b and is not invariant under perturbation.

7. Computing the important quantity v,(a, M)

Since the quantity v,(a, M), which is defined in (4.3), plays a very important role in
characterizing the convergence of a vector cascade algorithm in a Sobolev space and
in characterizing the L, smoothness of a refinable function vector, it is of interest to
find a numerical algorithm for efficiently computing or estimating the quantity
vp(a, M).

For a matrix A, we denote 4* == A”. For u,ve (/2(Z°))™", define

N [ s
Cuypy = trace(/gz:lsu(/)’)v(ﬁ) ) —trdce<(2n)s /{_W A(E)6(E) df). (7.1)

There are two operators <,y and Z,) which are convolved version
of the operators S,y and T, in Proposition 2.5. Define %, and
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T am to be
Famv(e) =|det M| > a(My—oa+p)v(y)a(B), «eZ', ve(/o(Z%)™,
ByeZ*
T amv(0) = |det M| Y~ a(Mo—y+ Bo(y)a(p)’, aeZ', wve(/o(Z*)™.
pye?’

It is easy to check that { %, pu,0)> = {u, T 4pv) for all u,ve(/o(2*))"”". Recall
that spec(A) denotes the multiset of all the eigenvalues of A4 counting the multiplicity
of the eigenvalues.

It is known in the literature that v,(a, M) can be computed by finding the spectral
radius of a finite matrix (see [8,11,16,18,21,26,28,32,33,42.43] and references therein).
In the vector case, Jia and Jiang [28] found the following algorithm for computing
va(a, M) for an isotropic dilation matrix M for which we shall provide a self-
contained and simple proof here.

Theorem 7.1. Let M be an sxs dilation matrix and o= (oy,...,05),
where spec(M) ={o1,...,0,}. Let a be a finitely supported mask on 7°
with multiplicity r such that a satisfies the sum rules of the highest possible order

k + 1 but not k + 2 in (2.8) and (2.9) with some sequence y e (KO(ZS))]X' and y(0) #0.
Then the quantity vy(a, M) defined in (4.3) can be calculated by the following
procedure:

(D) Form a new sequence be(/o(Zs))rzxr2 by
b(a) = [det M| > a(B)®a(x+ ), «eZ'; (7.2)

pez’

() Caleulate the set K = 7°n 37" M~ (supp b), where supp b = {fe Z°: b(B)#0};
(3) Define the set Ej to be
Ep ={cF, Jo " Jespec(d(0))\{1}, |ul<k}

u{o || <2k + 1} (7.3)

Then the quantity p,(a, M,p,y), which is defined in (4.1), is given by \/p,/|det M|,
where

pi = max{|A: Zespec((b(Ma— f)), e x)\Ex}-
Consequently, v,(a, M) = —log, vy /Pr-
Proof. By Proposition 2.4, without loss of generality, we can assume y(&) =

[71(£),0,...,0]. By assumption on mask a and Proposition 2.4, d(£) must take
the form of (2.10) such that (2.11) holds. Let Wj :=span{w: w(¢) =
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W(E)B(E), u,ve ¥k, Y. Since Vi, = ¥V as x (£L0(Z°)" ! we can easily deduce
that

Vi Ui . A Ix(r—1
Wi = C0LLEY 2her15, V126 (P k) =0
U1 V22

s

vae (%.kﬁ)(rfl)xl’ va€ (fo(zs))(rfl)x(rfl) }

For a finite-dimensional subspace V of (/¢(Z*))”™" such that 7,V <V, it was
proved in [21] that spec(7 qmly) {0} = spec(T oumly A (x)y=) v {0}. So, for
simplicity, spec(7 4,m|y) always means spec(Z amy (s (k)yr)-

Let m = |det M|. For ve¥;,, let w denote the sequence given by W(¢) =
3(&)6(¢)". By induction, one has

(2n)*||ay * UH?KZ(Z.\))M =2n) {ay *v,a, x v

:trace(/[ ; dn(f)ﬁ(f)ﬁ(f)*dn(f)*dé)

1 _—
:—ntrace< / T (&) df) .
m [—m,n)* ’

For we (£¢(Z*))"™" such that (&) >0 (that is, W(&) is positive semidefinite), we have
T auw(€)=0 and

trace(/[ . fEZW(f) dﬁ) < /[ ; ||<7§,;W(f)||fl dé

<rx trace( / Fgw(é) dﬁ).
[_T[J[)s '

By the Cauchy—Schwartz inequality, we deduce that

1 T
pila, M. 2.y) = sup{l[anx ol| [/, it 0€ T iy} = \[0(T wnrl) /.

In order to calculate p(7 4y, ), we define three types of subspaces U}, U7, U} of

(Hj)rxr by
0 0 0 r—1)x i
IPEH_/}a Uf = { [p 0]11?6(1_1_/)( Y 1}7 jeNo (74)
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and U} = {p: p" € U?}. Due to the special form of @(¢) in (2.10) and (2.11), by a
simple computation, it follows directly from (2.19) and (2.21) that

b 0] [m X @My -+ Bp(ani(p) 0
&F - Byez
a,M
[S.up 0
= » pE€llnpin,
0 0] p 2k+1

where ce/o(Z") is given by c(a) = > 57 ar,1(f — a)ar1(B); that is, (&) = ld1 ()]
Since a; satisfies the sum rules of order k£ + 1, so ¢ satisfies the sum rules of order
2k +2. By (6) in Proposition 2.4, S, up —p(M*L)eHdeg(p)_] for all pelly,;.
Therefore, Sepp=p(M~')modIl;_; for all pell;/Il;_; and j=0,...,2k + 1.
Consequently,

spec(Semlm,m, ) = spec(S(M ', 0)) = {a™": |u = j},
where S(M~!, 0)) is defined in (2.1). Hence,
2%+1
spec(Laluy, ) =speclSearln,.)) = | spec(Searlmym, )
Jj=0

={o7" |u/<2k+1}.

By Proposition 2.4 and a simple computation, it follows from (2.19) and (2.21) that
for all pe (IT;) "~

. & (Bp(r)aii(-—My+p) 0
S aM 0 0] —m |
" 0 /}sza’z‘,z(ﬁ)P(“/)al,l('*MVJrﬁ) 0
Zsazl(ﬁ)[samwp]('+ﬁ) 0
= | <t . (7.5)
ﬁgsazj(ﬂ)[SaLuMP]('+ﬂ) 0

Since ) ; satisfies the sum rules of order of k + 1, by Proposition 2.5 and d,,(0) =
S pez @22(B), for pe (M) """ we have

Y @ (B)Su,mpl-+B) = Y d(Bp(M7(-+ B))

pez’ pezs

=G>5(0)'p(M™") mod (Mgeg(py—1)" """
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Consequently, the quotient group (U?@® Uy,,,)/(U? @ Uy, ) is invariant under
Som and for j=0, ...k,

, ool _ 0 0
“Mlp 0| | da0)ypMty 0]
O 0 2 1 2 1
» 0 G(Uj @ U2k+1)/(Uj4 ® Uniyy)-

Now by spec(d»2(0)) = spec(d(0))\{1}, it is easy to verify that

SpeC(ya.M|(Uj2® UL )/(U2, & UZ‘HI))

= {n: Jespec(dr»(0)*), nespec(S(M~", 0;))}

= {207": Jespec(d(0))\{1}, |u| =j}.
Therefore, we have

k

)/U21k+]) = Lg Spec(=g)a,M|(U/2®Uzlkﬂ)/((/ﬁl@UZlkH))
]:

— {Io™": Lespec(d(0))\{1}, [u|<k}.

Spec(ya,M‘(U,f@ Ul

Similarly, we have

)

k
)/Uzlkﬂ) = LJO Spec(ya,M“U/}@U21k+]>/(Uj3—l®Uzlk+]
]:

={lo7E: Aespec(d@(0))\{1}, |u|<k}.

spec(Va7M\(U£@U1

2k+1

By the definition of x5, ks :H,ﬁ. It is straightforward to see that W =
(Us,, ® U@ U})*". By the duality relation, we conclude that

spec(T a,ml o2y w) :Spec(‘yaﬁM|U2‘k_l®U,f®U;)

- Spec(yu"M| Uy ) v Spec(ya‘M | Ui ® Ullk+l/U21k+] )

U spec(SL . ml vieu)

=E;.

/U

Using the vec operation as discussed in Lemma 2.2, it is easy to see that
spec(7 aul (k) = spec((b(Mo— ), pek)- Therefore, spec(Z amly,) =
spec((b(Mo — B)), gex)\Ex which completes the proof. [



Bin Han | Journal of Approximation Theory 124 (2003) 44-88 85

The above proof can be carried out similarly by using  , s directly instead of
using <, m (see [19]). The above proof can be also easily adapted to take into
account the symmetry of the mask. For computing v,(a, M) for scalar masks by
taking into account symmetry to significantly reduce the size of the problem, see [19].
One way of computing the set K in Theorem 7.1 is as follows. Choose any initial
finite subset Ky of Z° such that K< Ky=7Z'. Recursively define K;:=
Ki 1nM " (K;,_y +suppb),jeN. Then there must exist some j such that K; =

K;_i. An easy argument shows that K = K;. For more detail, see [19, Proposmon
2.2]. From the proof of Theorem 7.1, we observe that K can be replaced by any
finite subset Ky of Z* such that M~'(Ky+suppb)nZ°<cK, and for every
0<j<k, there is a subset B; of (/(Ky))*' such that B; generates 77, ,; that is,
span{v(- — p): veB;, feZ'} = V7,

In the univariate case, one can compute v,(a, M) by factorizing the symbol of a
mask [7,38,41] as follows.

Proposition 7.2. Let M be an integer such that |M|>1. Let a be a matrix mask on 7
such that a satisfies the sum rules of order k + 1 in (2.8) and (2.9) with some sequence
ye(lo(2))™. Let U, be given in Proposition 2.4 so that U},(Mé)fld(f) U, (&) takes the
form of (2.10). Define a new sequence b by

. _ pmiMEYkt] -1
b(&) = (1 0 ) 101]
_ ity
x Uy(ME) ()0, (&) (1 i ) 101], (7.6)

Then b is a finitely supported sequence on 7 and
o 1 1/n
pk(aa M»P»y) =P (ba M»P» 0) — ’11Lngc ||bn| |(/l)(Z))"X"’

where by(&) = b(M"'¢)---b(ME)b(E). Moreover, p,(a, M,2,y) = \/py/|M]|, where
px is the spectral radius of (3., b(B)®b(e+P)),pexs Where K =

Zn Y2 M~ (supp a — supp a).

Proof. By Proposition 2.4, it suffices to prove it for the case (&) = [1(¢),0, ...,0]
and Uy(é) = I.. By (2.10) and (2.11), b must be a finitely supported sequence. Let w
be given by 1#(¢) = diag((1 — e )*' I,_,). We observe that {wej: j=1,...,r} =
By generates ¥, and d(¢) = w(Mf)b(é)vfi(é)*l. Consequently, we have

T 1/n
pr(a,M,p,y) = nlgrclb ||t WH(//)([))"*"

and

@y W(E) = da(ENB(E) = W(M"E)by(E), neN.
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Since all a,b and w are finitely supported, we assume that they are supported on
[-N, N] for some positive integer N. Define

3N—-1

éu(&) = Z diag(e ™" I_)a, xw(&).

=0
Note that
BalE) = i(M"E) aw(E) = > diag(e ™, 1 1)az F ().
=0

It is easy to see that b, vanishes outside [—M"N, M"N| and b,(f) = ¢,(p) for all
peZn[—M"N, M"N]. Therefore, we have

BN bnll(z,z)yr < (3N)'| lenlliz, 2y

< lan = wll i, @)y < Wl v, @y

bull iz, @)y

Consequently,
T 1/n ST 1/n
pila, M.p,y) = Kim lan Wil g, g)rr = K0 {[Ball 7, 7))

which completes the proof. [

Acknowledgment

The author would like to thank Professor Rong-Qing Jia at the University of
Alberta for several discussions that motivate this work.

Note added in the revised version. 1t is straightforward to see that all the results and
proofs in the paper hold for a general (not necessarily isotropic) dilation matrix when
k = 0. After submitting this paper, we became aware that the convergence of a
vector cascade algorithm in L,(R*) with a general dilation matrix has also been
obtained in Li [35,36] (that is, the equivalence between (1) and (10) for the case k = 0
in Theorem 4.3).
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