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Abstract

In this paper we shall study vector cascade algorithms and refinable function vectors with a

general isotropic dilation matrix in Sobolev spaces. By introducing the concept of a canonical

mask for a given matrix mask and by investigating several properties of the initial function

vectors in a vector cascade algorithm, we are able to take a relatively unified approach to study

several questions such as convergence, rate of convergence and error estimate for a perturbed

mask of a vector cascade algorithm in a Sobolev space W k
p ðRsÞ ð1pppN; kAN,f0gÞ: We

shall characterize the convergence of a vector cascade algorithm in a Sobolev space in various

ways. As a consequence, a simple characterization for refinable Hermite interpolants and a

sharp error estimate of a vector cascade algorithm in a Sobolev space with a perturbed mask

will be presented. The approach in this paper enables us to answer some unsolved questions in

the literature on vector cascade algorithms and to comprehensively generalize and improve

results on scalar cascade algorithms and scalar refinable functions to the vector case.
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1. Introduction

Refinable function vectors and vector subdivision schemes, as two of the
most important and extensively studied fundamental objects in the literature of
wavelet analysis, are useful in many applications such as signal processing and
computer aided geometric design [3,9,12,21,23–25,34,37,45,46]. A vector cascade
algorithm is closely related to a vector subdivision scheme. It is the purpose of this
paper to study refinable function vectors and vector cascade algorithms in a
relatively unified approach to have a better picture and understanding of some of
their properties.

An s � s integer matrix M is called a dilation matrix if all its eigenvalues are
greater than one in modulus. In this paper, we are concerned with the following
vector refinement equation

f ¼ jdet Mj
X
bAZs

aðbÞfðM � 	bÞ; ð1:1Þ

where f ¼ ðf1;y;frÞ
T is called an M-refinable function vector which is an r � 1

column vector of compactly supported functions or distributions, and a is called a
(matrix) mask with multiplicity r which is a finitely supported sequence of r � r

complex-valued matrices on Zs:
Let N0 denote all the nonnegative integers. For m ¼ ðm1;y;msÞANs

0; we denote

jmj :¼ jm1j þ?þ jmsj; m! :¼ m1!?ms! and xm :¼ xm11 ?xms
s for x ¼ ðx1;y; xsÞARs: The

partial derivative of a differentiable function f with respect to the jth coordinate is
denoted by Dj f ; j ¼ 1;y; s; and for m ¼ ðm1;y; msÞANs

0; Dm is the differential

operator D
m1
1 ?D

ms
s : We denote by W k

p ðRsÞ the Sobolev space that consists of all

functions f such that DmfALpðRsÞ for all mANs
0 and jmjpk; equipped with the norm

defined by

jj f jjW k
p ðRsÞ :¼

X
jmjpk

jjDmf jjLpðRsÞ:

For a Banach space ðB; jj � jjBÞ; we denote ðBm�n; jj � jjBm�nÞ the Banach space of all

m � n matrices ðbj;kÞ1pjpm;1pkpn whose entries are elements in B; equipped with the

following norm:

jjðbj;kÞ1pjpm;1pkpnjjBm�n :¼ jjðjjbj;kjjBÞ1pjpm;1pkpnjjRm�n ;

where jj � jjRm�n denotes some norm on Rm�n: Note that all norms jj � jjRm�n on Rm�n

are equivalent. In particular, Rs :¼ Rs�1 for short.

Start with some appropriate initial function vector f0AðW k
p ðRsÞÞr�1: In order to

solve the vector refinement equation (1.1), we employ the iteration scheme

Qn
a;Mf0 ðnAN0Þ; where Qa;M is the cascade operator on ðLpðRsÞÞr�1 ð1pppNÞ

given by

Qa;Mf :¼ jdet Mj
X
bAZs

aðbÞf ðM � 	bÞ; fAðLpðRsÞÞr�1: ð1:2Þ
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This iteration scheme is called a (vector) cascade algorithm (see [3,9]) associated with
mask a and dilation matrix M: If f is a fixed point of Qa;M (that is, Qa;Mf ¼ f), then
f must satisfy (1.1). When the multiplicity r ¼ 1; a vector cascade algorithm and a
refinable function vector are called a scalar cascade algorithm and a scalar refinable
function, respectively.

Vector cascade algorithms and various properties of refinable function vectors
have been extensively studied in literature [1–47]. See Section 4 for detailed
discussion on recent developments on cascade algorithms. This paper is largely
motivated by the work in Chen et al. [4] on convergence of vector cascade algorithms
and by the work in [23] on refinable Hermite interpolants and their applications in
computer-aided geometric design.

Though vector cascade algorithms and vector subdivision schemes have been
relatively well studied in the literature, there are still several unanswered questions in
this area and we feel that a relatively unified and self-contained approach is helpful
to have a better picture and understanding of these and related topics.

For a compactly supported r � 1 function vector f on Rs; we say that the shifts of

f are stable (see [30]) if spanff̂ðxþ 2pbÞ: bAZsg ¼ Cr�1 for all xARs; where the

Fourier transform ĝ of gAL1ðRsÞ is defined to be ĝðxÞ ¼
R
Rs gðtÞe	it�x dt; xARs and

can be naturally extended to tempered distributions.
In the following, let us mention some questions that motivate this work.

Q1: As in [4], let Yk denote the set of all appropriate initial function vectors in a
cascade algorithm. It was asked in Chen et al. [4] that ‘‘It would be interesting

to know whether there always exists some F ¼ ð f1;y; frÞT in Yk such that the
shifts of f1;y; fr are stable.’’

Q2: Suppose that Q1 is true and the cascade algorithm with such an initial function
vector F converges in a Sobolev space. Will the cascade algorithm with every
initial function vector in Yk converge in the Sobolev space?

Q3: As an interesting family of refinable function vectors, refinable Hermite
interpolants are of interest in computer-aided geometric design (see
[12,17,23,37,45,46]). How to characterize a refinable Hermite interpolant in
terms of its mask?

Q4: In many situations, truncation and perturbation of a mask are needed in
applications. How will the perturbation of a matrix mask affect its vector
cascade algorithm and its refinable function vector?

The structure of the paper is as follows. In Section 2, we shall introduce some
auxiliary results which are of interest in their own right. Then we shall demonstrate
that based on a simple observation which converts a given matrix mask into a
canonical mask, vector cascade algorithms and refinable function vectors can be
essentially investigated using the same techniques for the scalar case. At the end of
Section 2, we shall study the structures of two very important subspaces in wavelet
analysis.

In Section 3, we shall investigate necessary conditions for the initial function
vectors in a cascade algorithm. The difficulty in Q1 partially lies in the fact that the
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set Yk; which is described in [4], has a rather complicated structure. Our investigation
leads to a very simple way of describing the set Yk of all possible initial function
vectors and consequently allows us to affirmatively answer Q1 (See Proposition 3.5).
As in [18], we shall also investigate the mutual relations among the initial function
vectors in a cascade algorithm. It turns out that such mutual relations are very useful
in investigating many problems related to cascade algorithms.

In Section 4, we shall characterize the convergence of a vector cascade
algorithm in a Sobolev space in terms of its mask in various ways. In
particular, we shall give a positive answer to Q2 (See Theorem 4.3). It turns
out that there is a very important quantity npða;MÞ defined in (4.3) in Section 4

which connects the convergence of vector cascade algorithms with the smoothness
of refinable function vectors. More precisely, when M is isotropic and the shifts
of a refinable function vector f with mask a and dilation matrix M are stable,
the quantity npða;MÞ is equal to the critical Lp smoothness exponent of f: On the

other hand, we shall show in Section 4 that a vector cascade algorithm associated
with mask a and dilation matrix M for every initial function vector in Yk converges

in the Sobolev space W k
p ðRsÞ if and only if npða;MÞ4k: In the rest of Section 4, we

shall also investigate the rate of convergence of a vector cascade algorithm (See
Theorem 4.4).

In Section 5, we shall completely characterize a refinable Hermite interpolant
in terms of its mask which settles Q3 (See Corollary 5.2). We show that a
refinable function vector f with mask a and dilation M is a Hermite interpolant of
order r if and only if its mask a is a Hermite interpolatory mask of order r and
nNða;MÞ4r:

In Section 6, we shall study how the perturbation of a mask will affect its vector
cascade algorithm and its refinable function vector. We settle Q4 by obtaining a
sharp error estimate for a vector cascade algorithm and a refinable function vector
with a perturbed mask in Section 6 (See Theorem 6.2). The results in Section 6 are
not trivial generalizations of the corresponding results in the scalar case since when
r41 the set Yk of initial function vectors indeed depends on the perturbed mask and
therefore, is not invariant under perturbation.

Since the quantity npða;MÞ is very important, in Section 7, we shall discuss how to

compute the particular quantity n2ða;MÞ by an efficient numerical algorithm in [28]
(See Theorem 7.1). We shall also discuss how to compute npða;MÞ by factorizing the

symbol of a univariate matrix mask a (See Proposition 7.2).
In this paper, we not only give alternative proofs for and improve some known

results in the literature, but also obtain some new results on vector cascade
algorithms and refinable function vectors. Our approach in this paper is relatively
unified and may yield relatively simple proofs. The approach in this paper will be
helpful for other problems related to vector cascade algorithms and refinable
function vectors; it also enables us to have a better understanding of vector
subdivision schemes in the geometric setting. Moreover, when k ¼ 0; the Sobolev

space W k
p ðRsÞ is the LpðRsÞ space and we observe that all the results and proofs in

this paper hold for a general (not necessarily isotropic) dilation matrix.
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2. Auxiliary results, canonical masks and two subspaces

In this section, we shall introduce some auxiliary results and the concept of a
canonical mask for a given matrix mask. Then we shall investigate the structure of
two subspaces which play an important role in analyzing various properties of vector
cascade algorithms and refinable function vectors.

For kAN0; let Ok be the ordered set fmANs
0: jmj ¼ kg under the lexicographic

order. That is, n ¼ ðn1;y; nsÞ is less than m ¼ ðm1;y; msÞ in the lexicographic order if
jnjojmj or nj ¼ mj for j ¼ 1;y; i 	 1 and niomi: By #Ok we denote the cardinality of

the set Ok: For an s � s matrix N; SðN;OkÞ is defined to be the following ð#OkÞ �
ð#OkÞ matrix [19] uniquely determined by

ðNxÞm

m!
¼
X
nAOk

SðN;OkÞm;n
xn

n!
; mAOk: ð2:1Þ

It is obvious that SðA;OkÞSðB;OkÞ ¼ SðAB;OkÞ: For matrices A ¼ ðai;jÞ1pipI ;1pjpJ

and B ¼ ðbc;nÞ1pcpL;1pnpN ; the (right) Kronecker product A#B is defined to be

ðai;jBÞ1pipI ;1pjpJ ; its ðði 	 1ÞL þ c; ð j 	 1ÞN þ nÞ-entry is ai;jbc;n and can be

conveniently denoted by ½A#B�i;j;c;n: It is well known that ðA þ BÞ#C ¼ ðA#CÞ þ
ðB#CÞ; C#ðA þ BÞ ¼ ðC#AÞ þ ðC#BÞ; ðA#BÞðC#EÞ ¼ ðACÞ#ðBEÞ and

ðA#BÞT ¼ AT#BT :
The following result generalizes [18, Proposition 2.6] and is convenient to deal

with derivatives in Sobolev spaces.

Proposition 2.1. Let D :¼ ½D1;y;Ds� be the row vector of differentiation operators.

Denote the 1� sk row vector of kth order differentiation operators by #kD :¼
D#?#D with k copies of D; where # denotes the (right) Kronecker product. Let N

be an s � s real-valued matrix. For any matrix f of functions in CkðRsÞ and for any

matrices B and C of complex numbers such that the multiplication BfC is well defined,
then

½#kD�#½Bf ðN�ÞC�ð�Þ ¼ Bð½#kD�#f ÞðN�Þð½#kN�#CÞ; ð2:2Þ

or equivalently,

Dk#½Bf ðN�ÞC�ð�Þ ¼ BðDk#f ÞðN�ÞðSðN;OkÞ#CÞ; ð2:3Þ

where Dk :¼ ðDmÞmAOk
is a 1� ð#OkÞ row vector of kth order differentiation operators

and SðN;OkÞ is defined in (2.1).

Proof. Let F ¼ BfC: As in [18], it is easy to check that ½D#½FðN�Þ��1;i;j;c ¼
½ðDNÞ#F �1;i;j;cðN�Þ: So, D#½FðN�Þ� ¼ ½ðDNÞ#F �ðN�Þ: By induction, we have

½#kD�#½Bf ðN�ÞC�ð�Þ ¼ ½#kðDNÞ�#½BfC�ðN�Þ ¼ B½#kðDNÞ#ð fCÞ�ðN�Þ

¼Bð½#kD�#f ÞðN�Þð½#kN�#CÞ:
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In order to prove (2.3), we define a ð#OkÞ � sk matrix H by Hm;j :¼ 1; if ½#kD�1;j ¼
Dm; and 0; otherwise, for j ¼ 1;y; sk and mAOk: Similarly, define an sk � ð#OkÞ
matrix G by Gj;m :¼ 1; if j ¼ minfi: ½#kD�1;i ¼ Dmg; and 0; otherwise. It is easy to

verify that

HG ¼ I#Ok
; Dk ¼ ð#kDÞG; #kD ¼ ðDkÞH

and

SðN;OkÞ ¼ Hð#kNÞG:

It follows from (2.2) and the above relations that (2.3) holds. &

The following result will be needed later and is of interest in its own right.

Lemma 2.2. Let M be an s � s matrix. Let A;B;C;E;F be given matrices of 2p-
periodic trigonometric polynomials such that A;B;C;E are square matrices. Let X be

an unknown m � n matrix of 2p-periodic trigonometric polynomials such that

AðxÞX ðMTxÞBðxÞ 	 CðxÞX ðxÞEðxÞ 	 FðxÞ is well defined. Suppose that X ð0Þ satisfies

Að0ÞX ð0ÞBð0Þ ¼ Cð0ÞXð0ÞEð0Þ þ Fð0Þ: If ð# jMÞ#Bð0ÞT#Að0Þ 	 Is j#Eð0ÞT#

Cð0Þ (or equivalently, SðM;OjÞ#Bð0ÞT#Að0Þ 	 I#Oj
#Eð0ÞT#Cð0Þ) is invertible

for all j ¼ 1;y; k; then the following system of linear equations given by

Dm½Að�ÞXðMT �ÞBð�Þ�ð0Þ ¼ Dm½Cð�ÞXð�ÞEð�Þ�ð0Þ þ DmFð0Þ; 0ojmjpk ð2:4Þ

has a unique solution for fDmXð0Þ: 0ojmjpkg:

Proof. It is well known that vecðCXEÞ ¼ ðET#CÞvecðXÞ; where for X ¼
ðXi;jÞ1pipm;1pjpn;

vecðX Þ :¼ ðX1;1;y;Xm;1;X1;2;y;Xm;2;y;X1;n;y;Xm;nÞT :

Rewrite (2.4) as

Dm½ðBð�ÞT#Að�ÞÞvecðX ðMT �ÞÞ�ð0Þ

¼ Dm½ðEð�ÞT#Cð�ÞÞvecðXð�ÞÞ�ð0Þ þ Dm½vecðFÞ�ð0Þ:

So, it suffices to prove the claim with B ¼ E ¼ I : Now (2.4) becomes

½# jD�#½Að0ÞX ðMT �Þ 	 Cð0ÞXð�Þ�ð0Þ

¼ ½# jD�#½ðCð�Þ 	 Cð0ÞÞXð�Þ þ Fð�Þ þ ðAð0Þ 	 Að�ÞÞXðMT �Þ�ð0Þ

¼: Gj

for j ¼ 1;y; k: By the Leibniz differentiation formula, we observe that Gj only

involves DmXð0Þ; jmjoj: So, by Proposition 2.1, we have

Að0Þð½# jD�#X Þð0Þð½# jMT �#InÞ 	 Cð0Þð½# jD�#XÞð0ÞIs jþn ¼ Gj
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for j ¼ 1;y; k: That is,

ð½# jM�#In#Að0Þ 	 Is jþn#Cð0ÞÞvecðð½# jD�#X Þð0ÞÞ ¼ vecðGjÞ

for j ¼ 1;y; k: Since the matrix ð# jMÞ#In#Að0Þ 	 Is jþn#Cð0Þ is invertible for
every j ¼ 1;y; k; we have

vecðð½# jD�#XÞð0ÞÞ ¼ ð½# jM�#In#Að0Þ 	 Is jþn#Cð0ÞÞ	1vecðGjÞ:

The proof is completed by induction on j ¼ 1;y; k: &

A matrix M is isotropic if M is similar to a diagonal matrix diagðs1;y; ssÞ such
that js1j ¼ ? ¼ jssj ¼ jdet Mj1=s: An s � s matrix M is isotropic [18] if and only if

there exists a norm jj � jjM on Cs�1 such that

jjMxjjM ¼ jdet Mj1=sjjxjjM 8xACs�1: ð2:5Þ

When M is isotropic, jj � jjM denotes a norm on Cs�1 such that (2.5) holds. For a

matrix or an operator A; we denote rðAÞ :¼ limn-N jjAnjj1=n the spectral radius of A:

When A is an s � s isotropic matrix, we have rðAÞ ¼ jdet Aj1=s:
The Fourier series or symbol of a sequence a on Zs is defined to be

âðxÞ :¼
X
bAZs

aðbÞe	ib�x; xARs: ð2:6Þ

Throughout this paper, we denote anðnAN0Þ to be the sequence defined by

ânðxÞ :¼
Yn

j¼1

âððMTÞn	jxÞ ¼ âððMTÞn	1xÞ?âðMTxÞâðxÞ: ð2:7Þ

The sequence an is closely related to a vector subdivision scheme used in computer-
aided geometric design and plays an important role in investigating vector cascade
algorithms and refinable function vectors.

Lemma 2.3. Let M be an s � s isotropic dilation matrix. Suppose that fnðnANÞ are

function vectors in ðW k
p ðRsÞÞr�1

such that the sequence fn converges to fN in the

Sobolev space ðW k
p ðRsÞÞr�1; 1pppN; and when p41 we additionally assume that all

fn vanish outside a fixed compact set of Rs: Then

lim
n-N

rðMÞkn
f̂nððMTÞnxÞ ¼ lim

n-N

Dm½f̂nððMT Þn�Þ�ðxÞ ¼ 0 8xa0; jmjpk:

Proof. Since all fn are supported on a compact set when 1oppN; by Hölder
inequality, it follows from the assumption limn-N jj fn 	 fNjjðW k

p ðRsÞÞr�1 ¼ 0 that

limn-N jj fn 	 fNjjðW k
1
ðRsÞÞr�1 ¼ 0:

Let N :¼ MT and x be a fixed nonzero point in Rs: Since dDmfnDmfnðxÞ ¼ ðixÞm f̂nðxÞ and

jj dDmð fn 	 fNÞDmð fn 	 fNÞðNnxÞjjpjjDmð fn 	 fNÞjjðL1ðRsÞÞr�1pjj fn 	 fNjjðW k
1
ðRsÞÞr�1
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for jmjpk; we have

jjðiNnxÞm f̂nðNnxÞjj ¼ jjdDmfnDmfnðNnxÞjjpjj dDmfNDmfNðNnxÞjj þ jj fn 	 fNjjðW k
1
ðRsÞÞr�1 :

By the Riemann–Lebesgue lemma, we conclude that

lim
n-N

jjðiNnxÞmf̂nðNnxÞjj ¼ lim
n-N

jj dDmfNDmfNðNnxÞjj þ lim
n-N

jj fn 	 fNjjðW k
1
ðRsÞÞr�1

¼ 0 8jmjpk:

The claim follows directly from the above identity, Proposition 2.1 and the
assumption that M is an isotropic dilation matrix. &

We denote by c0ðZsÞ the linear space of all finitely supported sequences on Zs:
Similarly, cpðZsÞ denotes the linear space of all sequences v on Zs such that

jjvjjcpðZsÞ:¼ ð
P

bAZs jvðbÞjpÞ1=poN: When K is a compact subset of Zs; cðKÞ denotes
the linear space of all vAc0ðZsÞ such that v vanishes outside K : By d we denote the
Dirac sequence on Zs such that dð0Þ ¼ 1 and dðbÞ ¼ 0 for all bAZs

\f0g:
Let a be a matrix mask with multiplicity r: We say that a satisfies the sum rules of

order k þ 1 with respect to the dilation matrix M if there exists a sequence

yAðc0ðZsÞÞ1�r such that ŷð0Þa0;

Dm½ ŷðMT �Þâð�Þ�ð0Þ ¼ Dmŷð0Þ 8jmjpk; mANs
0 ð2:8Þ

and

Dm½ ŷðMT �Þâð�Þ�ð2pbÞ ¼ 0 8jmjpk; bAðMTÞ	1
Zs
\Zs: ð2:9Þ

The following result generalizes [22, Theorem 2.2] to any dimension and is quite
useful in studying vector cascade algorithms and refinable function vectors.

Proposition 2.4. Let yAðc0ðZsÞÞ1�r
such that ŷð0Þa0: Then there exists

UyAðc0ðZsÞÞr�r
such that det ÛyðxÞ is a nonzero constant (that is, the sequence having

symbol ÛyðxÞ	1
is finitely supported) and

#̃yðxÞ ¼ ½ #̃y1ðxÞ;y; #̃yrðxÞ� :¼ ŷðxÞÛyðxÞ

satisfies

#̃y1ð0Þ ¼ 1; Dm #̃yjð0Þ ¼ 0 8j ¼ 2;y; r and jmjpk:

Let a be a finitely supported matrix mask with multiplicity r and let f satisfy
#fðMTxÞ ¼ âðxÞ #fðxÞ: Define

#̃aðxÞ :¼ ÛyðMTxÞ	1
âðxÞÛyðxÞ and

#*fðxÞ :¼ ÛyðxÞ	1 #fðxÞ:

Then
#*fðMTxÞ ¼ #̃aðxÞ #*fðxÞ: The equation in (2.8) holds if and only if

Dm½ #̃yðMT �Þ #̃að�Þ�ð0Þ ¼ Dm #̃yð0Þ for all jmjpk:
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Therefore, when (2.8) holds, #̃aðxÞ must take the form:

â1;1ðxÞ â1;2ðxÞ
â2;1ðxÞ â2;2ðxÞ

" #
with â1;1ð0Þ ¼ 1; Dmâ1;2ð0Þ ¼ 0 8jmjpk; ð2:10Þ

where a1;1Ac0ðZsÞ; a1;2Aðc0ðZsÞÞ1�ðr	1Þ; a2;1Aðc0ðZsÞÞðr	1Þ�1
and

a2;2Aðc0ðZsÞÞðr	1Þ�ðr	1Þ: Moreover, the following statements are equivalent:

(a) The mask a satisfies the sum rules of order k þ 1 in (2.8) and (2.9) with the

sequence y;
(b) The mask ã satisfies the sum rules of order k þ 1 in (2.8) and (2.9) with the

sequence ỹ whose symbol is ½ #̃y1ðxÞ; 0;y; 0�;
(c) #̃aðxÞ takes the form of (2.10) and

Dmâ1;1ð2pbÞ ¼ 0 and Dmâ1;2ð2pbÞ ¼ 0

8jmjpk; bAðMTÞ	1
Zs
\Zs: ð2:11Þ

Proof. Write ŷðxÞ ¼ ½ ŷ1ðxÞ;y; ŷrðxÞ�: Since ŷð0Þa0; we can assume ŷ1ð0Þa0;
otherwise we can permute the entries in ŷ: Since ŷ1ð0Þa0; it is easy to see that there
exist cjAc0ðZsÞ; j ¼ 2;y; r such that Dm½ ŷjð�Þ 	 ĉjð�Þŷ1ð�Þ�ð0Þ ¼ 0 for all jmjpk and

j ¼ 2;y; r; or equivalently, Dmĉjð0Þ ¼ Dm½ ŷjð�Þ=ŷ1ð�Þ�ð0Þ for all jmjpk and j ¼
2;y; r: Define UyAðc0ðZsÞÞr�r by

ÛyðxÞ ¼
1

ŷ1ð0Þ
1 	ĉðxÞ
0 Ir	1

" #
with ĉðxÞ ¼ ½ĉ2ðxÞ;y; ĉrðxÞ�:

It is easy to verify that #̃yðxÞ ¼ ŷðxÞÛyðxÞ is desired. Other statements can be easily

proved by a direct computation and by the Leibniz differentiation formula. &

We call a mask satisfying (2.10) and (2.11) a canonical mask of a given mask. The
concept of a canonical mask allows us to investigate vector cascade algorithms and
refinable function vectors using the same techniques for the scalar case. A canonical
mask can preserve the symmetry of the original mask by appropriately choosing the
matrix Uy [22].

The convolution of two sequences is defined to be

½u � v�ðaÞ :¼
X
bAZs

uðbÞvða	 bÞ; uAðc0ðZsÞÞc�m; vAðc0ðZsÞÞm�n:

Define a semi-convolution of a function and a sequence as follows:

u � f :¼
X
bAZs

uðbÞf ð� 	 bÞ; uAðc0ðZsÞÞc�m; fAðLpðRsÞÞm�n; ð2:12Þ
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or f � u :¼
P

bAZs f ð� 	 bÞuðbÞ for fAðLpðRsÞÞc�m and uAðc0ðZsÞÞm�n: It is easy to

verify that

u � ðv � f Þ ¼ ðu � vÞ � f ; uAðc0ðZsÞÞc�m; vAðc0ðZsÞÞm�n; fAðLpðRsÞÞn�k:

Given yAðc0ðZsÞÞ1�r; we now define two interesting subspaces associated with y

which play an important role in wavelet analysis. Let D :¼ ½D1;y;Ds� be the row
vector of differentiation operators and let i denote the imaginary unit such that

i2 ¼ 	1: Observe that ð	iDÞmŷð0Þ ¼
P

bAZs yðbÞð	bÞm and

½pð� 	 iDTÞŷ�ð0Þ :¼
X
mANs

0

ðDmpÞð�Þ ð	iDÞm

m!
ŷð0Þ

¼
X
bAZs

pð� 	 bÞyðbÞ ¼ p � y; pAPk; ð2:13Þ

where Pk denotes the linear space of all polynomials with total degree no greater
than k: Define

Vk;y :¼ fvAðc0ðZsÞÞr�1: p � ðy � vÞð0Þ ¼ 0 8pAPkg: ð2:14Þ

By (2.13), we see that

Vk;y ¼ fvAðc0ðZsÞÞr�1: Dm½ ŷð�Þv̂ð�Þ�ð0Þ ¼ 0 8jmjpkg:

Define

Pk;y :¼fp � yAðPkÞ1�r: pAPkg

¼f½pð� 	 iDTÞŷ�ð0ÞAðPkÞ1�r: pAPkg: ð2:15Þ

For pAðPkÞm�n; we shall use p to denote both the polynomial matrix pð�Þ
and the polynomial sequence ðpðbÞÞbAZs since they can be easily distinguished in

the context.
For a matrix A or an operator A acting on a finite-dimensional space V ; we denote

specðAÞ or specðAjV Þ the multiset of all eigenvalues of A or AjV counting the

multiplicity of the eigenvalues.

Proposition 2.5. Let yAðc0ðZsÞÞ1�r
such that ŷð0Þa0: Let Vk;y and Pk;y be defined in

(2.14) and (2.15), respectively. Then

(1) vAVk;y ) vð� 	 bÞAVk;y for all bAZs; that is, Vk;y is shift invariant;

(2) pAPk;y ) DmpAPk;y and pð� 	 bÞAPk;y for all mANs
0 and bAZs;

(3) Vk;y ¼ fvAðc0ðZsÞÞr�1:
P

bAZs pðbÞvð	bÞ ¼ p � vð0Þ ¼ 0 8pAPk;yg;
(4) Pk;y ¼ fpAðPkÞ1�r:

P
bAZs pðbÞvð	bÞ ¼ p � vð0Þ ¼ 0 8vAVk;yg;
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(5) Let Uy be given in Proposition 2.4. Then Vk;y ¼ spanfvð� 	 bÞ: vABk;y; bAZsg;
that is, Bk;y generates the shift invariant space Vk;y; where Bk;y is defined to be

Bk;y :¼fv: v̂ðxÞ ¼ drmdrmdðxÞÛyðxÞe1; jmj ¼ k þ 1g

,fv: v̂ðxÞ ¼ ÛyðxÞej; j ¼ 2;y; rg; ð2:16Þ

where drmdrmdðx1;y; xsÞ :¼ ð1	 e	ix1Þm1?ð1	 e	ixsÞms for m ¼ ðm1;y; msÞ and ej

denotes the jth coordinate unit vector in Rr;
(6) The mask a satisfies the sum rules of order k þ 1 in (2.8) and (2.9) with the

sequence y if and only if Sa;MPk;yDPk;y; where the subdivision operator Sa;M is

defined to be

Sa;MvðaÞ :¼ jdet Mj
X
bAZs

vðbÞaða	 MbÞ; vAðc0ðZsÞÞ1�r; ð2:17Þ

(7) The mask a satisfies the sum rules of order k þ 1 in (2.8) and (2.9) with the

sequence y if and only if Ta;MVk;yDVk;y; where the transition operator Ta;M is

defined to be

Ta;MvðaÞ ¼ jdet Mj
X
bAZs

aðMa	 bÞvðbÞ; vAðc0ðZsÞÞr�1: ð2:18Þ

In fact, if a satisfies the sum rules of order k þ 1 in (2.8) and (2.9) with the sequence y;

then Sa;Mðp � yÞ ¼ pðM	1�Þ � y for all pAPk and consequently, Sa;Mp 	
pðM	1�ÞAPdegðpÞ	1;y for all pAPk;y and specðSa;M jPk;y

Þ ¼ specðTa;M jVk;y
Þ ¼

fðs1;y; ssÞ	m: jmjpk; mANs
0g; where specðMÞ ¼ fs1;y; ssg:

Proof. By the definition of Vk;y and Pk;y; (1) and (2) hold. Point (3) follows directly

from (2.14) and ðp � yÞ � v ¼ p � ðy � vÞ: Point (4) can be easily verified by considering
the special case ŷðxÞ ¼ ½ ŷ1ðxÞ; 0;y; 0�:
Take #̃yðxÞ ¼ ŷðxÞÛyðxÞ: By Proposition 2.4, we have Vk;ỹ ¼ Vk;½ ỹ1;0;y;0� ¼ Vk;d �

ðc0ðZsÞÞðr	1Þ�1: It is known (see [26]) that Vk;d ¼ spanfrmdð� 	 bÞ: bAZs; jmj ¼
k þ 1g which can be proved using long division (see [14,15]). Consequently, we
deduce that frmde1: jmj ¼ k þ 1g,fdej: j ¼ 2;y; rg generates Vk;ỹ: Now it is easy

to see that Bk;y generates Vk;y:

To prove (6), by Proposition 2.4, it suffices to prove it for the special case that
ŷðxÞ ¼ ½ ŷ1ðxÞ; 0;y; 0� and âðxÞ takes the form of (2.10). Let bAc0ðZsÞ: It is an easy
exercise to show that (see [17, Proposition 2.2])X

bAZs

pðbÞbð� 	 MbÞAPk 8pAPk

3Dmb̂ð2pbÞ ¼ 0 8jmjpk; bAðMT Þ	1
Zs
\Zs: ð2:19Þ
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If (2.19) holds and Dm½ŵðMT �Þb̂ð�Þ�ð0Þ ¼ Dmŵð0Þ for all jmjpk for some wAc0ðZsÞ;
then one has

Sb;Mp ¼ jdet Mj
X
bAZs

pðbÞbð� 	 MbÞ ¼ pðM	1�Þ � b

¼
X
mANs

0

DmpðM	1�Þ ð	iM	1DTÞm

m!
b̂ð0Þ 8pAPk ð2:20Þ

and consequently Sb;Mðp � wÞ ¼ pðM	1�Þ � w for all pAPk: In particular, one has

Sb;Mp ¼ jdet Mj
X
bAZs

pðbÞbð� 	 MbÞ ¼ 0 8pAPk

3Dmb̂ð2pbÞ ¼ 0 8jmjpk; bAðMTÞ	1
Zs: ð2:21Þ

Now by Proposition 2.4, we see that (6) is true since Pk;y ¼ f½p; 0;y; 0�: pAPkg and

for all pAPk;

Sa;M ½p; 0;y; 0� ¼ ½Sa1;1;Mp;Sa1;2;Mp� ¼ ½Sa1;1;Mp; 0;y; 0�

¼ ½pðM	1�Þ � a1;1; 0;y; 0�:

Note that when #̃yðxÞ ¼ ŷðxÞÛðxÞ and #̃aðxÞ ¼ ÛðMTxÞ	1
âðxÞÛðxÞ; it is easy to verify

that dSa;MvSa;MvðxÞ ¼ v̂ðMTxÞâðxÞ for uAðc0ðZsÞÞ1�r and Sã;Mðv � ỹÞ ¼ ½Sa;Mðv � yÞ� � U :

We conclude that Sa;Mðp � yÞ ¼ pðM	1�Þ � y for all pAPk: By (2.13), Sa;Mp 	
pðM	1�ÞAPdegðpÞ	1 for all pAPk and therefore, specðSa;M jPk;y

Þ ¼
fðs1;y; ssÞ	m: jmjpkg:

By a simple computation, for pAðPkÞ1�r and vAðc0ðZsÞÞr�1; we haveX
aAZs

pðaÞTa;Mvð	aÞ ¼ jdet Mj
X

a;bAZs

pðaÞað	Ma	 bÞvðbÞ

¼
X
bAZs

Sa;MpðbÞvð	bÞ:

Now (7) follows directly from (6) and the above identity. &

Note that an ¼ jdet Mj	n
Sn

a;MðdIrÞ and

Qn
a;Mf ¼ jdet Mjn½an � f �ðMn�Þ ¼ ½Sn

a;MðdIrÞ � f �ðMn�Þ:

3. Initial function vectors in a vector cascade algorithm

In this section, we shall study the initial function vectors in a cascade algorithm.
Results in this section will be useful in investigating vector cascade algorithms and
refinable function vectors.

In the following, following the lines developed in [18], we study some necessary
conditions for initial function vectors in a cascade algorithm. Using Taylor series, we
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see that the condition in (2.8) is equivalent to saying that ŷðMTxÞâðxÞ ¼ ŷðxÞ þ
oðjxjkÞ; as x-0: All the results and proofs involving y in this paper depend only on

the values Dmŷð0Þ; jmjpk: So, when Dm #̃yð0Þ ¼ Dmŷð0Þ for all jmjpk; we can replace y

by ỹ:
The assumption in (2.8) is justified by the following result which generalizes [4,

Lemma 2.1].

Proposition 3.1. Let M be an s � s isotropic dilation matrix. Let f be an r � 1 column

vector of compactly supported functions in W k
p ðRsÞ such that spanff̂ð2pbÞ: bAZsg ¼

Cr�1: If limn-N jjQn
a;Mf 	 fNjjðW k

p ðRsÞÞr�1 ¼ 0 for some fNc0; where the cascade

operator Qa;M is defined in (1.2), then

1 is a simple eigenvalue of âð0Þ and all other eigenvalues of âð0Þ

are less that rðMÞ	k
in modulus: ð3:1Þ

Consequently, there exists yAðc0ðZsÞÞ1�r
such that ŷð0Þa0 and (2.8) holds. Moreover,

if (3.1) holds, then up to a scalar multiplication the values Dmŷð0Þ; jmjpk satisfying

(2.8) are uniquely determined by the mask a:

Proof. Let fn :¼ Qn
a;Mf : Then f̂nððMTÞnxÞ ¼ ânðxÞf̂ðxÞ and limn-N jjfn 	

fNjjðW k
p ðRsÞÞr�1 ¼ 0; where an is defined in (2.7). Note that ânð0Þ ¼ ½âð0Þ�n: It follows

from Lemma 2.3 that

lim
n-N

rðMÞkn½âð0Þ�nf̂ð2pbÞ ¼ lim
n-N

rðMÞkn
f̂nððMTÞn2pbÞ

¼ 0 8bAZs
\f0g: ð3:2Þ

We claim that f̂ð0Þa0: Otherwise, combining f̂ð0Þ ¼ 0; (3.2) and the assumption

spanff̂ð2pbÞ: bAZsg ¼ Cr�1; we deduce that rðâð0ÞÞorðMÞ	kp1: It follows that

f̂NðxÞ ¼ lim
n-N

ânððMTÞ	nxÞ f̂NððMTÞ	nxÞ ¼ 0 which is a contradiction to our

assumption fNc0: Now it is easy to verify that (3.1) holds.

Note that (3.1) implies that ½# jM�#âð0ÞT 	 Is jþr is invertible for every j ¼
1;y; k: By Lemma 2.2 and the fact that 1 is a simple eigenvalue of âð0Þ; there is a
unique solution fDmŷð0Þ: 0ojmjpkg to the system of linear equations in (2.8) for
any given ŷð0Þa0 satisfying ŷð0Þâð0Þ ¼ ŷð0Þ: &

For initial function vectors in a vector cascade algorithm, we have the following
result.

Proposition 3.2. Assume that there exists yAðc0ðZsÞÞ1�r
such that ŷð0Þa0 and (2.8)

holds. For any compactly supported function vector fAðW k
p ðRsÞÞr�1; if the

sequence Qn
a;Mf ðnANÞ converges in the Sobolev space ðW k

p ðRsÞÞr�1
and
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limn-N ŷð0Þ dQn
a;MfQn
a;Mf ð0Þ ¼ 1; then

ŷð0Þf̂ð0Þ ¼ 1 and Dm½ ŷð�Þf̂ð�Þ�ð2pbÞ ¼ 0 8jmjpk; bAZs
\f0g: ð3:3Þ

If (3.1) holds, then there is a unique distribution vector f satisfying #fðMTxÞ ¼
âðxÞ #fðxÞ and ŷð0Þ #fð0Þ ¼ 1: If fAðW k

p ðRsÞÞr�1
satisfies #fðMTxÞ ¼ âðxÞ #fðxÞ and

ŷð0Þ #fð0Þ ¼ 1; then

Dm½ ŷð�Þ #fð�Þ�ð0Þ ¼ dðmÞ and Dm½ ŷð�Þ #fð�Þ�ð2pbÞ ¼ 0 8jmjpk; bAZs
\f0g:

ð3:4Þ

Proof. Let N ¼ MT : Define fn by

f̂nðxÞ :¼ ŷðxÞ dQn
a;MfQn
a;Mf ðxÞ ¼ ŷðxÞânðN	nxÞf̂ðN	nxÞ:

By (2.8) and the Leibniz differentiation formula, for bAZs and jmjpk; by induction
we have

Dm½f̂nðNn�Þ�ð2pbÞ ¼Dm½ ŷðNn�Þânð�Þf̂ð�Þ�ð2pbÞ

¼Dm½ ŷðN�Þâð�Þf̂ð�Þ�ð2pbÞ ¼ Dm½ ŷð�Þf̂ð�Þ�ð2pbÞ:

Since the sequence Qn
a;Mf converges in ðW k

p ðRsÞÞr�1; we deduce that the sequence fn

converges in W k
p ðRsÞ: By Lemma 2.3, we conclude that

Dm½ ŷð�Þf̂ð�Þ�ð2pbÞ ¼ lim
n-N

Dm½f̂nðNn�Þ�ð2pbÞ ¼ 0

for all jmjpk and bAZs
\f0g: So, (3.3) holds since 1 ¼ ŷð0Þ dQn

a;MfQn
a;Mf ð0Þ ¼ ŷð0Þ½âð0Þ�n

f̂ð0Þ ¼ ŷð0Þf̂ð0Þ by ŷð0Þâð0Þ ¼ ŷð0Þ:
When (3.1) holds, since 1 is a simple eigenvalue of âð0Þ; there is a unique

distribution vector f such that #fðMTxÞ ¼ âðxÞ #fðxÞ and ŷð0Þ #fð0Þ ¼ 1: When

fAðW k
p ðRsÞÞr�1; by Qn

a;Mf ¼ f; we have Dm½ ŷð�Þ #fð�Þ�ð2pbÞ ¼ 0 for all jmjpk and

bAZs
\f0g: Since #fðMTxÞ ¼ âðxÞ #fðxÞ; by (2.8), we have

Dm½ ŷðMT �Þ #fðMT �Þ�ð0Þ ¼ Dm½ ŷðMT �Þâð�Þ #fð�Þ�ð0Þ ¼ Dm½ ŷð�Þ #fð�Þ�ð0Þ 8jmjpk:

Since M is a dilation matrix, by Lemma 2.2, the above system has a unique solution

for fDm½ ŷð�Þ #fð�Þ�ð0Þ: 0ojmjpkg: Obviously, the above system holds with

Dm½ ŷð�Þ #fð�Þ�ð0Þ ¼ dðmÞ; jmjpk which completes the proof. &

For a compactly supported function vector fAðW k
p ðRsÞÞr�1; we say that f satisfies

the moment conditions of order k þ 1 with respect to y if (3.3) holds. It is well known
that (3.4) is equivalent to ðp � yÞ � f ¼ p for all pAPk: Similarly, (3.3) is equivalent to
p 	 ðp � yÞ � fAPdegðpÞ	1 for all pAPk; where degðpÞ denotes the total degree of p:
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Throughout the paper, we denote

Fk;y;p :¼ffAðW k
p ðRsÞÞr�1: f is compactly supported and satisfies

the moment conditions of order k þ 1

with respect to y in ð3:3Þg: ð3:5Þ

Note that the set Fk;y;p depends only on the values Dmŷð0Þ; jmjpk: One can prove

that Qa;MFk;y;pDFk;y;p if and only if a satisfies the sum rules of order k þ 1 in (2.8)

and (2.9) with the sequence y:

Lemma 3.3. Let y; ỹAðc0ðZsÞÞ1�r
such that ŷð0Þa0 and #̃yð0Þa0: Then Fk;y;p ¼ Fk;ỹ;p

if and only if there exists cAc0ðZsÞ such that ĉð0Þ ¼ 1 and

Dm #̃yð0Þ ¼ Dm½ĉð�Þŷð�Þ�ð0Þ 8jmjpk: ð3:6Þ

Similarly, Vk;y ¼ Vk;ỹ (or Pk;y ¼ Pk;ỹ) if and only if there exists cAc0ðZsÞ such that

(3.6) holds and ĉð0Þa0:

Proof. By Proposition 2.4, it suffices to prove it for ŷðxÞ ¼ ½ ŷ1ðxÞ; 0;y; 0� with
ŷ1ð0Þ ¼ 1: In this case, Fk;y;p consists of all compactly supported function vectors

½f1; f2;y; fr�TAðW k
p ðRsÞÞr�1 such that f̂1ð0Þ ¼ 1 and Dm f̂1ð2pbÞ ¼ 0 for all jmjpk and

bAZs
\f0g: Write ½ #̃y1;y; #̃yr� ¼ #̃y: Now it is straightforward to see that Fk;y;p ¼

Fk;ỹ;p if and only if #̃y1ð0Þ ¼ 1 and Dm #̃yjð0Þ ¼ 0 for all jmjpk and j ¼ 2;y; r: It is easy

to see that there exists cAc0ðZsÞ such that Dmĉð0Þ ¼ Dm½ #̃y1ð�Þ=ŷ1ð�Þ�ð0Þ for all jmjpk:
We complete the proof. &

The following lemma will be needed later.

Lemma 3.4. Let fcm: jmjpk; mANs
0g be arbitrarily given complex numbers such that

c0 ¼ 0: For any e40; there exists cAc0ðZsÞ such that jjĉð�ÞjjLN
oe and Dmĉð0Þ ¼ cm for

all jmjpk:

Proof. We prove the claim by induction. When k ¼ 0; the claim holds by setting
c ¼ 0: Suppose that the claim holds for k ¼ j 	 1 with jX1: By induction hypothesis,
there exists aAc0ðZsÞ such that jjâð�ÞjjLN

oe=2 and Dmâð0Þ ¼ cm for all jmjpj 	 1: It is

easy to see that there exists bAc0ðZsÞ such that Dmb̂ð0Þ ¼ 0 for all jmjpj 	 1 and

Dmb̂ð0Þ ¼ cm 	 Dmâð0Þ for all jmj ¼ j: For a large enough integer n; we see that

jjn	j b̂ðn�ÞjjLN
oe=2: Set ĉðxÞ ¼ âðxÞ þ n	j b̂ðnxÞ: Then cAc0ðZsÞ is desired since it is

easy to verify that jjĉð�ÞjjLN
oe and Dmĉð0Þ ¼ cm for all jmjpj: So, the claim holds for

k ¼ j: The proof is completed by induction. &

For an r � 1 vector f of compactly supported distributions on Rs; we say that the

shifts of f are linearly independent if spanff̂ðxþ 2pbÞ: bAZsg ¼ Cr�1 for all xACr�1:
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Therefore, if the shifts of f are linearly independent, then the shifts of f are stable.

Let f be a compactly supported function vector in ðLpðRsÞÞr�1: It is known (see [30])

that the shifts of f are stable if and only if there exist positive constants C1 and C2

such that

C1jjvjjðcpðZsÞÞ1�rp
X
bAZs

vðbÞf ð� 	 bÞ
�����

�����
�����

�����
LpðRsÞ

pC2jjvjjðcpðZsÞÞ1�r 8vAðcpðZsÞÞ1�r: ð3:7Þ

Note that when fAðLpðRsÞÞr�1 and f is compactly supported, it can be easily proved

that the right side of (3.7) holds for some positive constant C2: For n ¼ ðn1;y; nsÞ
and m ¼ ðm1;y; msÞ; npm means njpmj for all j ¼ 1;y; s; and nom means npm and

nam:
Before proceeding further, let us answer the question in [4] (see Q1 in Section 1 for

more detail) by the following stronger result.

Proposition 3.5. Let yAðc0ðZsÞÞ1�r
such that ŷð0Þa0: Let bm ð0ojmjpJÞ be any

complex numbers. Then there is an r � 1 compactly supported function vector f in

ðCJðRsÞÞr�1
such that the shifts of f are stable, Dm½ ŷð�Þf̂ð�Þ�ð0Þ ¼ bm for all 0ojmjpJ;

and f satisfies the moment conditions of order J þ 1 in (3.3) with respect to y:

Moreover, without the requirement that Dm½ ŷð�Þf̂ð�Þ�ð0Þ ¼ bm for all 0ojmjpJ; the

shifts of f can be linearly independent.

Proof. By Proposition 2.4, it suffices to prove the claim for ŷðxÞ ¼ ½ ŷ1ðxÞ; 0;y; 0�
with ŷ1ð0Þ ¼ 1: It is well known [9] that there is a univariate compactly supported

orthogonal ðr þ 1Þ-refinable function fACJðRÞ and there exist compactly supported

CJ wavelet functions c1;y;cr such that ffð� 	 bÞ;cjð� 	 bÞ: j ¼ 1;y; r; bAZg is

an orthogonal system. By Proposition 3.2, #fð0Þ ¼ 1 and Dm #fð2pbÞ ¼ 0 for all
0pmpJ and bAZ\f0g: Now we take the tensor product in Rs: So, we have an
ðr þ 1ÞIs-refinable function F and wavelet functions C1;y;Cðrþ1Þs	1 such that their

shifts are orthogonal. It is clear that #Fð0Þ ¼ 1 and Dm #Fð2pbÞ ¼ 0 for all jmjpJ and
bAZs

\f0g: Let c0 ¼ 1 and recursively define

cm :¼ bm 	
X

0pnom

m!
n!ðm	 nÞ! Dm	n½ ŷ1ð�Þ #Fð�Þ�ð0Þcn; 0ojmjpJ:

By Lemma 3.4, there exists cAc0ðZsÞ such that ĉð0Þ ¼ 0; Dmĉð0Þ ¼ cm for all

0ojmjpJ and jjĉð�ÞjjLN
p1=2: Now define f1 by f̂1ðxÞ ¼ ð1þ ĉðxÞÞ #FðxÞ and fj ¼ Cj	1

for all j ¼ 2;y; r: By the Leibniz differentiation formula, it is easy to see that f is
desired since 1þ ĉðxÞa0 for all xARs and fFð� 	 bÞ: bAZsg,ffjð� 	 bÞ: j ¼
2;y; r; bAZsg is an orthogonal system and therefore stable. &
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We observe that the function vector f in Proposition 3.5 can also be constructed
similarly from other suitable scalar refinable functions such as the B-spline functions
using biorthogonal bases rather than orthogonal bases.

For aAZs and tARs; we define

rav :¼ v 	 vð� 	 aÞ;

rtf :¼ f 	 f ð� 	 tÞ; vAðc0ðZsÞÞm�n; fAðLpðRsÞÞm�n: ð3:8Þ

For m ¼ ðm1;y; msÞANs
0; rm :¼ rm1

e1
?rms

es
; where ej is the jth coordinate unit vector

in Rs: Note that rmv ¼ rmd � v and ra f ¼ rad � f for aAZs:
Following the lines developed in [18], in the rest of this section we investigate

the mutual relations among the initial function vectors in a vector cascade
algorithm.

Theorem 3.6. Let yAðc0ðZsÞÞ1�r
such that ŷð0Þa0: Let f be a compactly supported

function vector in ðLpðRsÞÞr�1; where 0oppN: Then for any nonnegative integer k;

the following statements are equivalent:

(1) Dm½ ŷð�Þf̂ð�Þ�ð2pbÞ ¼ 0 for all bAZs and mANs
0 with jmjpk;

(2)
P

bAZs pðbÞf ð� 	 bÞ ¼ p � f ¼ 0 for all pAPk;y; where Pk;y is defined in (2.15);

(3) For some positive integer Nf ; f ¼
PNf

j¼1 vj � gj for some compactly supported

functions gjALpðRsÞ and some vjAVk;y; where Vk;y is defined in (2.14);

(4) f ¼
P

vABk;y
v � gv for some compactly supported functions gvALpðRsÞ; where Bk;y

is defined in (2.16).

Proof. By Proposition 2.4, it suffices to prove the claim for the case ŷðxÞ ¼
½ ŷ1ðxÞ; 0;y; 0�: For this special y; we observe that Pk;y ¼ f½p; 0;y; 0�: pAPkg and

Vk;y ¼ Vk;d � ðc0ðZsÞÞðr	1Þ�1:

Let g be the first component in the vector f : Since g is compactly supported, the
linear space spanfgð� 	 bÞw½0;1�s : bAZsg is finite dimensional. So pick up a basis

g1;y; gN for this space from the set fgð� 	 bÞw½0;1�s : bAZsg: Then the function g can

be uniquely written as the following finite sum g ¼
PN

j¼1 vj � gj for some vjAc0ðZsÞ:
By a simple computation, it is easy to verify (see [18, Theorem 1] for more detail) thatP

bAZs pðbÞgð� 	 bÞ ¼ 0 for all pAPk if and only if vjAVk;d for all j ¼ 1;y;N: Note

that for this particular form of y; ð1Þ is equivalent to Dmĝð2pbÞ ¼ 0 for all jmjpk and
bAZs: This completes the proof. &

There is a similar result of Theorem 3.6 on sequences [15]. For bAc0ðZsÞ;
Dmb̂ð2pbÞ ¼ 0 for all jmjpk and bAðMTÞ	1

Zs if and only if b̂ðxÞ ¼P
jmj¼kþ1

drmdrmdðMTxÞûmðxÞ for some umAc0ðZsÞ; or equivalently, b̂ðxÞ ¼
PNa

j¼1

#vjðMTxÞûjðxÞ for some NaAN and some sequences vjAVk;d and ujAc0ðZsÞ for

j ¼ 1;y;Na:
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As a direct consequence of Theorem 3.6, we have (see [18, Corollary 2.2]) the
following result.

Corollary 3.7. Let yAðc0ðZsÞÞ1�r
such that ŷð0Þa0: If f ; gAFk;y;p; where Fk;y;p is

defined in (3.5), then

Dmg ¼Dmf þ
X

vABjmj;y

v � hm;v and

Dmf ¼
X

vABjmj	1;y

v � Hm;v 8jmjpk; mANs
0 ð3:9Þ

for some compactly supported functions hm;v;Hm;vALpðRsÞ; or equivalently,

½# jD�#g ¼ ½# jD�#f þ
X

vABj;y

v � hj;v and

½# jD�#f ¼
X

vABj	1;y

v � Hj;v; j ¼ 0;y; k

for some compactly supported function vectors hj;v;Hj;vAðLpðRsÞÞ1�s j

:

4. Convergence of vector cascade algorithms in Sobolev spaces

In this section, we shall characterize convergence of a vector cascade algorithm in
a Sobolev space and we shall settle the question Q2 in Section 1. Before proceeding
further, let us introduce a very important quantity. Let a be a matrix mask with

multiplicity r: For any yAðc0ðZsÞÞ1�r such that ŷð0Þa0; we define

rkða;M; p; yÞ :¼ sup lim
n-N

jjan � vjj1=n

ðcpðZsÞÞr�1 : vAVk;y

n o
; 1pppN; ð4:1Þ

where an is defined in (2.7) and Vk;y is defined in (2.14). Let Bk;y be defined in (2.16).

By Proposition 2.4, we see that

rkða;M; p; yÞ ¼ max lim
n-N

jjan � vjj1=n

ðcpðZsÞÞr�1 : vABk;y

n o
since Bk;y generates Vk;y and jjan � ðvð� 	 bÞÞjjðcpðZsÞÞr�1 ¼ jjan � vjjðcpðZsÞÞr�1 for all

bAZs: Define

rða;M; pÞ :¼ inffrkða;M; p; yÞ: ð2:8Þ and ð2:9Þ hold for some

kAN0 and some yAðc0ðZsÞÞ1�r with ŷð0Þa0g: ð4:2Þ

We define the following important quantity:

npða;MÞ :¼ 	logrðMÞ½jdet Mj1	1=prða;M; pÞ�; 1pppN: ð4:3Þ

The above quantity npða;MÞ plays a very important role in characterizing the

convergence of a vector cascade algorithm in a Sobolev space and in characterizing
the Lp smoothness of a refinable function vector.
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The quantity rkða;M; p; yÞ defined in (4.1) can be rewritten using the cp-norm

joint spectral radius. Let A be a finite collection of linear operators acting on a
finite-dimensional normed vector space V : For a positive integer n; An denotes
An ¼ fðA1;y;AnÞ: A1;y;AnAAg; and for 1pppN; we define

jjAnjjpp :¼
X

ðA1;y;AnÞAAn

jjA1?Anjjp

and

jjAnjj
N

:¼ maxfjjA1?Anjj : ðA1;y;AnÞAAng;

where jj � jj denotes any operator norm. For 1pppN; the cp-norm joint spectral

radius of A (see [4,11,15,21,25,31,46] and references therein) is defined to be

rpðAÞ :¼ lim
n-N

jjAnjj1=n
p ¼ inf

nX1
jjAnjj1=n

p : ð4:4Þ

Let GM be a complete set of representatives of the distinct cosets of Zs=MZs: To
relate the quantity rkða;M; p; yÞ to the cp-norm joint spectral radius, we introduce

AeðeAGMÞ on ðc0ðZsÞÞr�1 by

AevðaÞ :¼
X
bAZs

aðMa	 bþ eÞvðbÞ; vAðc0ðZsÞÞr�1; aAZs: ð4:5Þ

It was proved in [21, Lemma 2.3] that if a is finitely supported, then for any finitely
supported sequence v on Zs; there exists a finite-dimensional subspace VðvÞ of

ðc0ðZsÞÞr�1 such that VðvÞ contains v and VðvÞ is the smallest subspace of ðc0ðZsÞÞr�1

which is invariant under the operators Ae; eAGM : We call such VðvÞ the minimal
fAe: eAGMg invariant subspace generated by v:

Let A :¼ fAejW : eAGMg where W is the minimal fAe: eAGMg invariant subspace

generated by a finite subset B of ðc0ðZsÞÞr�1: By [21, Lemmas 2.2 and 2.4], there
exists a positive constant C such that

C	1jjAnjjppmaxfjjan � vjjðcpðZsÞÞr�1 : vABgpCjjAnjjp 8nAN: ð4:6Þ

Consequently, when B ¼ Bk;y; rkða;M; p; yÞ ¼ rpðAÞ: Moreover, since

jdet Mjnð1=p	1=qÞjjAnjjqpjjAnjjppjjAnjjq
(see [21]) for 1pqpppN and nAN; it follows that

jdet Mj1=q	1=prkða;M; p; yÞp rkða;M; q; yÞ

p rkða;M; p; yÞ; 1pppqpN; kAN:

In other words, we have

npða;MÞXnqða;MÞX npða;MÞ þ ð1=q 	 1=pÞlogrðMÞjdet Mj;

1pppqpN: ð4:7Þ

Now we have the following result which generalizes [18, Proposition 2.7].
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Proposition 4.1. Let M be an s � s dilation matrix. Let a be a finitely supported mask

on Zs with multiplicity r: Let v1;y; vJAðc0ðZsÞÞr�1: Then for any r40 and 1pppN;

lim
n-N

rnjjan � vjjjðcpðZsÞÞr�1 ¼ 0 8j ¼ 1;y; J ð4:8Þ

if and only if there exist 0or0o1 and a positive constant C such that

jjan � vj jjðcpðZsÞÞr�1pCr	nrn
0 8nAN; j ¼ 1;y; J: ð4:9Þ

Moreover, assume that (2.8) holds for some kAN0 and yAðc0ðZsÞÞ1�r
with ŷð0Þa0: If

spanfv̂jð2pbÞ: j ¼ 1;y; Jg ¼ Cr�1 for all bAðMTÞ	1
Zs
\Zs and (4.8) holds with r ¼

jdet Mj1	1=prðMÞk; then the mask a must satisfy the sum rules of order at least k þ 1 in

(2.9) with the sequence y: In particular, if rjða;M; p; ỹÞojdet Mj1=p	1rðMÞ	k
for some

1pppN; jAN0 and ỹAðc0ðZsÞÞ1�r
with #̃yð0Þa0; then a must satisfy the sum rules of

order k þ 1 in (2.8) and (2.9) with the sequence y; and one must have jXk and Vk;ỹ ¼
Vk;y:

Proof. Let us use a similar technique as in the proof of [18, Proposition 2.7]. With
the help of cp-norm joint spectral radius and the relations in (4.4) and (4.6), we see

that (4.8) is equivalent to (4.9).

Denote N :¼ MT : Suppose that a satisfies the sum rules of order L in (2.8) and
(2.9) with y for 0pLok þ 1 (Obviously, it is true when L ¼ 0). By (2.8), for all

bAN	1Zs
\Zs and jmj ¼ L; by induction we have

Dm½ ŷðNn�Þânð�Þv̂jð�Þ�ð2pbÞ ¼Dm½ ŷðN�Þâð�Þv̂jð�Þ�ð2pbÞ

¼Dm½ ŷðN�Þâð�Þ�ð2pbÞv̂jð2pbÞ;

where in the last identity we used the induction hypothesis Dn½ ŷðN�Þâð�Þ�ð2pbÞ ¼ 0

for all jnjojmj ¼ L and bAN	1Zs
\Zs:Using the same technique as in the proof of [18,

Proposition 2.7], one can show that (4.9) implies that for bAN	1Zs
\Zs and jmj ¼ L;

lim
n-N

Dm½ ŷðN�Þâð�Þ�ð2pbÞv̂jð2pbÞ ¼ lim
n-N

Dm½ ŷðNn�Þânð�Þv̂jð�Þ�ð2pbÞ ¼ 0:

Since spanfv̂jð2pbÞ: j ¼ 1;y; Jg ¼ Cr�1 for all bAN	1Zs
\Zs; we see that

Dm½ ŷðN�Þâð�Þ�ð2pbÞ ¼ 0 for all jmj ¼ L and bAN	1Zs
\Zs: By induction, a must

satisfy the sum rules of order k þ 1 in (2.8) and (2.9) with y:

When rjða;M; p; ỹÞojdet Mj1=p	1rðMÞ	k; by Proposition 2.4, we see that

spanfv̂ð2pbÞ: vABj;ỹg ¼ Cr�1 for all bAN	1Zs
\Zs: So a must satisfy the sum rules

of order k þ 1 in (2.8) and (2.9) with the sequence y: By (2.8), we have
Dm½ ŷðNn�Þânð�Þv̂ð�Þ�ð0Þ ¼ Dm½ ŷð�Þv̂ð�Þ�ð0Þ for all jmjpk: By (4.9), we conclude that

Dm½ ŷð�Þv̂ð�Þ�ð0Þ ¼ lim
n-N

Dm½ ŷðNn�Þânð�Þv̂ð�Þ�ð0Þ ¼ 0 8jmjpk; vAVj;ỹ:

Therefore, by the definition of Vk;y; Vj;ỹDVk;y: In the following, we show that

Vj;ỹDVk;y implies that jXk and Vk;ỹ ¼ Vk;y: By Proposition 2.4, we can assume

that ŷðxÞ ¼ ½ ŷ1ðxÞ; 0;y; 0� with ŷ1ð0Þ ¼ 1: So Vk;y ¼ Vk;d � ðc0ðZsÞÞðr	1Þ�1: It is
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trivial to see that f½v; 0;y; 0�T : vAVj;dgDVj;ỹDVk;y and therefore, Vj;dDVk;d:

Hence, we must have jXk:

Denote ½ #̃y1ðxÞ;y; #̃yrðxÞ� ¼ #̃yðxÞ: In the following, we show that

#̃y1ð0Þa0 and Dm #̃ycð0Þ ¼ 0 8jmjpk; c ¼ 2;y; r: ð4:10Þ

Suppose that #̃ycð0Þa0 for some 2pcpr: Say, #̃y2ð0Þa0: There exists v2Ac0ðZsÞ such
that

Dmv̂2ð0Þ ¼ 	Dm½ #̃y1ð�Þ= #̃y2ð�Þ�ð0Þ 8jmjpj;

that is,

Dm½ #̃y1ð�Þ þ v̂2ð�Þ #̃y2ð�Þ�ð0Þ ¼ 0 8jmjpj:

So ½d; v2; 0;y; 0�TAVj;ỹDVk;y which is a contradiction since deVk;d: Therefore, we

conclude that #̃ycð0Þ ¼ 0 for all c ¼ 2;y; r: Since #̃yð0Þa0; we must have #̃y1ð0Þa0:

Since #̃y1ð0Þa0; there exists v1Ac0ðZsÞ such that

Dmv̂1ð0Þ ¼ 	Dm½ #̃y2ð�Þ= #̃y1ð�Þ�ð0Þ; that is;

Dm½v̂1ð�Þ #̃y1ð�Þ þ #̃y2ð�Þ�ð0Þ ¼ 0 8jmjpj: ð4:11Þ

So, ½v1; d; 0;y; 0�TAVj;ỹDVk;y which implies v1AVk;d; that is, Dmv̂1ð0Þ ¼ 0 for all

jmjpk: Since jXk; it follows from (4.11) that

Dm #̃y2ð0Þ ¼ 	Dm½v̂1ð�Þ #̃y1ð�Þ�ð0Þ ¼ 0

for all jmjpk: Similarly, we can prove that Dm #̃ycð0Þ ¼ 0 for all jmjpk and c ¼ 2;y; r:
So, (4.10) holds. Now it follows directly from (4.10) that Vk;ỹ ¼ Vk;y: &

By a similar argument as in [19, Theorem 3.1], if a satisfies the sum rules of order

k þ 1 with some yAðc0ðZsÞÞ1�r; then

rjða;M; p; yÞ ¼ maxfrkða;M; p; yÞ; jdet Mj1=p	1rðM	1Þ jþ1g

for all 1pppN and 0pjpk:
In order to investigate vector cascade algorithms in Sobolev spaces, we need the

following result which is essentially known in approximation theory (see Jia [27] and
cf. [6]).

Lemma 4.2. Let M be an s � s isotropic dilation matrix. Let g be a compactly

supported function in W k
p ðRsÞ (when p ¼ N; replace W k

p ðRsÞ by CkðRsÞ) such that

ĝð0Þa0 and Dmĝð2pbÞ ¼ 0 for all jmjpk and bAZs
\f0g; then for any compactly
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supported function fAW k
p ðRsÞ;

inf
vAc0ðZsÞ

f 	
X
bAZs

vðbÞgðMn � 	bÞ
�����

�����
�����

�����
LpðRsÞ

pCrðM	nÞk
X

mANs
0;jmj¼k

opðDmf ; rðM	nÞÞ 8nAN;

where C40 is independent of f and n; and opð f ; hÞ :¼ supjjtjjph jj f 	 f ð� 	 tÞjjLpðRsÞ;

h40:

Now we have the main result in this section which characterizes the convergence of
a vector cascade algorithm in a Sobolev space in various ways.

Theorem 4.3. Let M be an s � s isotropic dilation matrix and GM be a complete set of

representatives of the distinct cosets of Zs=MZs: Let a be a finitely supported matrix

mask on Zs with multiplicity r: Assume that there is a sequence yAðc0ðZsÞÞ1�r
such that

ŷð0Þa0 and (2.8) holds for a nonnegative integer k: Then the following statements are

equivalent:

(1) For every fAFk;y;p; where Fk;y;p is defined in (3.5), the cascade algorithm with

mask a; dilation matrix M and the initial function vector f converges in

ðW k
p ðRsÞÞr�1; that is, Qn

a;Mf ðnANÞ is a Cauchy sequence in the Sobolev space

ðW k
p ðRsÞÞr�1;

(2) For some fAFk;y;p (When p ¼ N; f is required to be in ðCkðRsÞÞr�1)

such that the shifts of f are stable (the existence of such an initial

function vector f is guaranteed by Proposition 3.5), the cascade algorithm with

mask a; dilation matrix M and the initial function vector f converges in

ðW k
p ðRsÞÞr�1;

(3) limn-N jdet Mjð1	1=pÞnrðMÞnkjjan � vjjðcpðZsÞÞr�1 ¼ 0 for all vABk;y; where an is

defined in (2.7) and Bk;y is defined in (2.16);

(4) limn-N jdet Mjð1	1=pÞnrðMÞnkjjan � vjjðcpðZsÞÞr�1 ¼ 0 for all vAVk;y; where Vk;y is

defined in (2.14);
(5) rkða;M; p; yÞojdet Mj1=p	1rðMÞ	k; where rkða;M; p; yÞ is defined in (4.1);
(6) rkða;M; p; yÞojdet Mj1=p	1rðMÞ	k

and the mask a satisfies the sum rules of

order k þ 1 in (2.8) and (2.9) with the sequence y;
(7) rða;M; pÞojdet Mj1=p	1rðMÞ	k; where rða;M; pÞ is defined in (4.2);
(8) npða;MÞ4k; where npða;MÞ is defined in (4.3);

(9) rpðfAejW : eAGMgÞojdet Mj1=p	1rðMÞ	k; where the operators Ae are defined in

(4.5) and W is the minimal fAe: eAGMg invariant subspace generated by

fv: vABk;yg;
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(10) Vk;y is invariant under all the operators Ae; eAGM and

rpðfAejVk;y-ðcðKÞÞr�1 : eAGMgÞojdet Mj1=p	1rðMÞ	k;

where K :¼ Zs-
P

N

j¼1 M	jK0 and

K0 :¼ f0; aAZs: aðaÞa0g 	 GM þ faAZs: jajp1g:

Moreover, any of the above statements implies that (3.1) holds and there is a unique

compactly supported function vector fAðW k
p ðRsÞÞr�1

such that ŷð0Þ #fð0Þ ¼ 1;

#fðMTxÞ ¼ âðxÞ #fðxÞ and limn-N jjQn
a;Mf 	 fjjðW k

p ðRsÞÞr�1 ¼ 0 for every initial function

vector fAFk;y;p:

Proof. Obviously, ð1Þ ) ð2Þ: Suppose (2) holds. By Proposition 2.4, without loss of
generality, we assume ŷðxÞ ¼ ½ ŷ1ðxÞ; 0;y; 0�: Let fn :¼ Qn

a;Mf : By assumption in (2),

limn-N jj fn 	 fNjjðW k
p ðRsÞÞr�1 ¼ 0 for some fNAðW k

p ðRsÞÞr�1: When p ¼ N; we must

have fNAðCkðRsÞÞr�1 since fAðCkðRsÞÞr�1: Let m :¼ jdet Mj: By induction, fn ¼
mn
P

bAZs anðbÞf ðMn � 	bÞ for all nAN0: Therefore, for m ¼ ðm1;y; msÞANs
0; we

have

rm;nfn ¼mn
X
bAZs

½rman�ðbÞf ðMn � 	bÞ with

rm;n :¼rm1
M	ne1

?rms

M	nes
8nAN0: ð4:12Þ

Since the shifts of f are stable, by (4.12), there exists a positive constant C depending
only on f such that

mn	n=pjjrmanjjðcpðZsÞÞr�rpCjjrm;nfNjjðLpðRsÞÞr�1 þ Cjjrm;nð fn 	 fNÞjjðLpðRsÞÞr�1 :

Note that all the functions fn and fN are supported on ½	L;L�s for some integer L

independent of n: Since M is isotropic, there is a constant C1 independent of n such
that

jjrm;nð fn 	 fNÞjjðLpðRsÞÞr�1pC1m
	nk=sjj fn 	 fNjjðW k

p ðRsÞÞr�1 8jmj ¼ k þ 1:

Since fNAðW k
p ðRsÞÞr�1 or fNAðCkðRsÞÞr�1 when p ¼ N; we deduce that limn-N

mnk=sjjrm;nfNjjðLpðRsÞÞr�1 ¼ 0 for all jmj ¼ k þ 1: By assumption limn-N jj fn 	
fNjjðW k

p ðRsÞÞr�1 ¼ 0; we have

lim
n-N

mnðk=sþ1	1=pÞjjrmanjjðcpðZsÞÞr�r ¼ 0 8jmj ¼ k þ 1; mANs
0:

Note that rman ¼ an � rmdIr: Since ½an � rmðde1Þ�ðbÞ is the first column of ½rman�ðbÞ;
in particular, we have

lim
n-N

mnðk=sþ1	1=pÞjjan � rmðde1ÞjjðcpðZsÞÞr�r ¼ 0

8jmj ¼ k þ 1; mANs
0: ð4:13Þ
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Denote g :¼ eT
1 f to be the first component of f : Since we assume that ŷðxÞ ¼

½ ŷ1ðxÞ; 0;y; 0� and f satisfies the moment conditions of order k þ 1 with respect to
y; we have ĝð0Þa0 and Dmĝð2pbÞ ¼ 0 for all jmjpk; bAZs

\f0g: Since

fnAðW k
p ðRsÞÞr�1; by Lemma 4.2, there exists vnAðc0ðZsÞÞr�1 such that

fn 	 mn
X
bAZs

vnðbÞgðMn � 	bÞ
�����

�����
�����

�����
ðLpðRsÞÞr�1

pCm	nk=s
X
jmj¼k

opðDmfn; rðM	nÞÞ; ð4:14Þ

where C is a constant independent of fn and n: Denote

gn :¼ fn 	 mn
X
bAZs

vnðbÞgðMn � 	bÞ ¼ mn
X
bAZs

ðan 	 ½vn; 0;y; 0�ÞðbÞf ðMn � 	bÞ:

Since the shifts of f are stable, there exists a positive constant C1 such that

mnðk=sþ1	1=pÞjjan 	 ½vn; 0;y; 0�jjðcpðZsÞÞr�rpC1m
nk=sjjgnjjðLpðRsÞÞr�1

pCC1

X
jmj¼k

opðDmfn; rðM	nÞÞ:

By the triangular inequality and the fact jmjpk; we have

opðDmfn; rðM	nÞÞpopðDmfN; rðM	nÞÞ þ 2jj fn 	 fNjjðW k
p ðRsÞÞr�1 :

Since DmfNAðLpðRsÞÞr�1 (when p ¼ N; DmfNAðCðRsÞÞr�1), it follows from the

above inequality that limn-N opðDmfn; rðM	nÞÞ ¼ 0: Consequently,

lim
n-N

mnðk=sþ1	1=pÞjjan 	 ½vn; 0;y; 0�jjðcpðZsÞÞr�r ¼ 0:

Since ½an � ðdejÞ�ðbÞ is the jth column of the matrix ðan 	 ½vn; 0;y; 0�ÞðbÞ for j ¼
2;y; r; in particular, we have

lim
n-N

mnðk=sþ1	1=pÞjjan � ðdejÞjjðcpðZsÞÞr�1 ¼ 0 8j ¼ 2;y; r: ð4:15Þ

Since frmðde1Þ: jmj ¼ k þ 1g,fdej: j ¼ 2;y; rg ¼ Bk;y and rðMÞ ¼ jdet Mj1=s;

ð2Þ ) ð3Þ:
ð3Þ ) ð4Þ ) ð5Þ are trivial. By Proposition 4.1, (5) implies that a satisfies the sum

rules of order k þ 1 with y: So ð5Þ ) ð6Þ: By the definition of rða;M; pÞ and npða;MÞ
in (4.2) and (4.3), it is obvious that ð6Þ ) ð7Þ and ð7Þ3ð8Þ: The equivalence
relations between (6), (9) and (10) are standard results on cp-norm joint spectral

radius.
In the following, we show that ð6Þ ) ð1Þ: Since a satisfies the sum rules of order

k þ 1 in (2.8) and (2.9) with y; by dQa;MfQa;Mf ðxÞ ¼ âððMTÞ	1xÞf̂ððMT Þ	1xÞ; it is easy to

verify that Qa;Mf also satisfies the moment conditions of order k þ 1 with respect to

y: By assumption in (6), there exist two constants 0oro1 and C40 such that

jjan � vjjðcpðZsÞÞr�1pCmnð1=p	1ÞrðMÞ	knrn 8vABk;y; nAN: ð4:16Þ
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Let g :¼ Qa;Mf 	 f : By Corollary 3.7, we have ½#kD�#g ¼
P

vABk;y
v � hk;v for some

compactly supported hk;vAðLpðRsÞÞ1�sk

: Since

fnþ1 	 fn ¼ Qn
a;Mg ¼ mn

X
bAZs

anðbÞgðMn � 	bÞ;

by Proposition 2.1, we have

½#kD�#½fnþ1 	 fn� ¼mn
X
bAZs

anðbÞð½#kD�#gÞðMn � 	bÞð#kMnÞ

¼mn
X

vABk;y

X
bAZs

½an � v�ðbÞhk;vðMn � 	bÞð#kMnÞ:

Since rð#kMnÞ ¼ rðMÞkno½rðMÞkr	1=2�n and all hk;vAðLpðRsÞÞ1�sk

are compactly

supported, there exist positive constants C1 and C2 such that

jj½#kD�#½fnþ1 	 fn�jjðLpðRsÞÞr�sk

pC1mnðrðMÞkr	1=2Þn
X

vABk;y

X
bAZs

½an � v�ðbÞhk;vðMn � 	bÞ

������
������

������
������
ðLpðRsÞÞr�sk

pC1C2mnð1	1=pÞrðMÞknr	n=2
X

vABk;y

jjan � vjjðcpðZsÞÞr�1 :

It follows from (4.16) that

jj½#kD�#½fnþ1 	 fn�jjðLpðRsÞÞr�sk pCC1C2ð#Bk;yÞrn=2 8nAN:

Thus, ½#kD�#fn is a Cauchy sequence in ðLpðRsÞÞr�sk

since 0oro1: Note that all fn

are supported on a fixed compact set. Therefore, we must have

lim
n-N

jjQn
a;Mf 	 fNjjðW k

p ðRsÞÞr�1 ¼ lim
n-N

jj fn 	 fNjjðW k
p ðRsÞÞr�1 ¼ 0

for some fNAðW k
p ðRsÞÞr�1: When (3.1) holds, we must have f̂N ¼ #f and

consequently, fN ¼ f:
Finally, we show ð7Þ ) ð2Þ: By definition of rða;M; pÞ in (4.2), we have

rJða;M; p; ỹÞojdet Mj1=p	1rðMÞ	k

for some JAN0 and ỹAðc0ðZsÞÞ1�r with #̃yð0Þa0 such that a satisfies the sum rules of
order J þ 1 but not J þ 2 in (2.8) and (2.9) with ỹ: By Proposition 4.1, JXk and

Vk;ỹ ¼ Vk;y: By Proposition 3.5, there exists a function vector fAðCJðRsÞÞr�1 such

that all the claims in Proposition 3.5 hold with y being replaced by ỹ and bm ¼
dðmÞ; jmjpJ: Since Vk;ỹ ¼ Vk;y; by Lemma 3.3 and appropriately scaling f by a

scalar constant, f must satisfy the moment conditions of order k þ 1 with respect to
y: So f is a suitable initial function vector in (2). Since a satisfies the sum rules of
order J þ 1 with ỹ; it is easy to check that Qa;Mf satisfies the moment conditions

of order J þ 1 with respect to ỹ and Dm½ #̃yð�Þ dQa;MfQa;Mf ð�Þ�ð0Þ ¼ dðmÞ for jmjpJ: Let
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g ¼ Qa;Mf 	 f : Now it is easy to verify that for every jmjpk; Dn½ #̃yð�Þĝð�Þ�ð2pbÞ ¼ 0

for all jnjpJ and bAZs: By Theorem 3.6, Dmg ¼
P

vABJ;ỹ
v � hm;v; jmjpk for some

compactly supported functions hm;vALpðRsÞ: Now the same argument to show ð6Þ )
ð1Þ yields that the sequence Qn

a;Mf converges in ðW k
p ðRsÞÞr�1: So, (2) holds. &

A comprehensive study of stationary cascade algorithms was given in [3]. For
r ¼ 1; convergence of scalar cascade algorithms was given by Jia [25] in LpðRÞ with
M ¼ 2; by Han and Jia [21] in LpðRsÞ with a general dilation matrix, by Lawton et al.

[34] in L2ðRsÞ with M ¼ 2Is; by Jia et al. [29] in W k
2 ðRsÞ and [19] in W k

p ðRsÞ with an

isotropic dilation matrix. For the general case r41; convergence of vector cascade
algorithms was investigated by Jia et al. [31] in LpðRÞ; by Shen [43] in L2ðRsÞ with
M ¼ 2Is; by Goodman and Lee [13] in W k

2 ðRÞ; by Micchelli and Sauer [39] in W k
p ðRÞ

and [40] in W k
p ðRsÞ; and more recently by Chen et al. [4] in W k

p ðRsÞ with an isotropic

dilation matrix (which establishes the equivalence between (1) and (10) in Theorem
4.3), as well as by Li [35,36] and by Zhou [47], and by many other related references
in the above papers.

With the help of Propositions 2.1, 2.4 and Corollary 3.7, the proof of Theorem 4.3
is relatively simple and gives us a better picture and understanding of vector cascade
algorithms; moreover, we have a clear description of and relation among the set
Fk;y;p of initial function vectors, the polynomial space Pk;y and the subspace Vk;y of

ðc0ðZsÞÞr�1: The statements in (2), (3) and (8) of Theorem 4.3 are new. In particular,
(2) settled Q2 in Section 1. The basis Bk;y for the spaceVk;y was first introduced here

to characterize the convergence of vector cascade algorithms. The characterization in
(8) connects the convergence of a cascade algorithm with the smoothness of the
refinable function vector and avoids the explicit appearance of the sequence y and
the integer k in the quantity npða;MÞ for the characterization in (8). From the proof

of Theorem 4.3, we see that without assuming that M is isotropic, the statements
(3)–(10) are equivalent to each other and any one of them implies (1). In fact, in the
above proof, ð2Þ ) ð3Þ is the only place where we need the assumption that M is
isotropic. More technical argument shows that Theorem 4.3 holds when M is a
dilation matrix with all its eigenvalues having the same modulus.

The Lp smoothness of a function fALpðRsÞ is measured by its Lp critical exponent

npð f Þ defined by

npð f Þ :¼ supfn þ n: jjDmf 	 Dmf ð� 	 tÞjjLpðRsÞpCf jtjn 8jmj ¼ n; tARsg:

When f ¼ ð f1;y; frÞT ; npð f Þ :¼ minfnpð fjÞ: j ¼ 1;y; rg: The same proof of

Theorem 4.3 to show ð2Þ ) ð3Þ and [16, Theorems 3.1 and 3.3] yield that
npðfÞXnpða;MÞ: Moreover, when the shifts of f are stable, then one has (see [8]

for p ¼ 2 and r ¼ 1)

npða;MÞpnpðfÞpnpða;MÞ ln rðMÞ
ln rðM	1Þ	1

:
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In particular, when M is isotropic, then npðfÞ ¼ npða;MÞ: For discussion on

smoothness of refinable functions and refinable function vectors, see [7,8,11,
16–18,21,26,28,32,33,38,42,44] and many references therein.

In the rest of this section, let us discuss the rate of convergence of a vector cascade
algorithm.

Theorem 4.4. Let M be an s � s isotropic dilation matrix. Let a be a finitely supported

matrix mask on Zs with multiplicity r: Let J be the largest integer that is less than

npða;MÞ; therefore, by Theorem 4.3, a satisfies the sum rules of order J þ 1 in (2.8) and

(2.9) with a sequence yAðc0ðZsÞÞ1�r: Let fAðW k
p ðRsÞÞr�1

satisfy the moment conditions

of order J þ 1 with respect to y and Dm½ ŷð�Þf̂ð�Þ�ð0Þ ¼ dðmÞ for all jmjpJ 	 k (the

existence of such an initial function vector f is guaranteed by Proposition 3.5). If

npða;MÞ4k; then the cascade algorithm associated with mask a; dilation matrix M

and the initial function vector f converges in ðW k
p ðRsÞÞr�1

and for any

0ororðMÞk	npða;MÞ; there exists a positive constant C such that

jjQn
a;Mf 	 fjjðW k

p ðRsÞÞr�1pCrn;

jjQnþ1
a;Mf 	 Qn

a;Mf jjðW k
p ðRsÞÞr�1p2Crn 8nAN; ð4:17Þ

where f is the unique M-refinable function vector satisfying #fðMTxÞ ¼ âðxÞ #fðxÞ and

ŷð0Þ #fð0Þ ¼ 1:

Proof. By npða;MÞ4J and Proposition 3.1, (3.4) holds with k being replaced by J:

So, by JXk; Dm½ ŷð�Þ #fð�Þ�ð0Þ ¼ dðmÞ ¼ Dm½ ŷð�Þf̂ð�Þ�ð0Þ for all jmjpJ 	 k: Now it is
easy to check that for all jmj ¼ k;

Dn½ ŷð�Þ dDm½f 	 f�Dm½f 	 f�ð�Þ�ð2pbÞ ¼ 0

for all jnjpJ and bAZs: By Theorem 3.6, for every jmj ¼ k; we have

Dm½f 	 f� ¼
X

vABJ;y

v � hm;v

for some compactly supported hm;vALpðRsÞ: Now the rest of the proof is identical to

that of Theorem 4.3 to show ð6Þ ) ð1Þ: &

5. Refinable Hermite interpolants

As an important family of refinable function vectors, refinable Hermite
interpolants are useful in computer-aided geometric design [12,17,23,37,45,47]. In
this section, we shall give a simple criterion to characterize a refinable Hermite
interpolant in terms of its mask and consequently we settle the question Q3 in
Section 1.

As a direct consequence of Theorem 4.3, we have the following result which
generalizes [21] and was also independently obtained in [6].
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Corollary 5.1. Let M be an s � s isotropic dilation matrix and a be a finitely supported

mask on Zs with multiplicity r: Let f be a nonzero compactly supported M-refinable

function vector with mask a: If fAðW k
p ðRsÞÞr�1 (when p ¼ N; we require

fAðCkðRsÞÞr�1) and the shifts of f are stable, then npða;MÞ4k; that is, the vector

cascade algorithm associated with mask a and dilation M converges in the Sobolev

space ðW k
p ðRsÞÞr�1:

Proof. By Proposition 3.1, (3.4) and (2.8) hold for some yAðc0ðZsÞÞ1�r with ŷð0Þa0:
Item (2) in Theorem 4.3 is satisfied by taking f ¼ f: The claim follows directly from
Theorem 4.3. &

Let us recall the definition of Hermite interpolants given in [17,23]. Let Lr :¼
fmANs

0: jmjprg and by #Lr we denote the cardinality of the set Lr: Now the

elements in Lr can be ordered in such a way that n ¼ ðn1;y; nsÞ is less that m ¼
ðm1;y; msÞ if either jnjojmj or when jnj ¼ jmj; nj ¼ mj for j ¼ 1;y; i 	 1 and niomi

for some 1pips: Let f ¼ ðfmÞmALr
be a column vector of functions on Rs: We say

that f is a Hermite interpolant of order r if fAðCrðRsÞÞð#LrÞ�1 and

½Dnfm�ðaÞ ¼ dðm	 nÞdðaÞ 8m; nALr; aAZs: ð5:1Þ

Let D j be defined in Proposition 2.1. In other words, (5.1) is equivalent to saying
that

½1;D;D2;y;Dr�#fðaÞ ¼ dðaÞI#Lr
8aAZs:

The definition of a Hermite interpolant can be generalized by replacing Lr by a finite
subset L of Ns

0 such that 0pnpmAL implies nAL: Note that ðn1;y; nsÞpðm1;y; msÞ
means njpmj for all j ¼ 1;y; s: This general definition of Hermite interpolants

includes the family of tensor product Hermite interpolants.
The following result gives us a simple criterion to characterize a multivariate

refinable Hermite interpolant in terms of its mask.

Corollary 5.2. Let M be an s � s isotropic dilation matrix and a be a finitely supported

mask on Zs with multiplicity #Lr for some rAN0: Let f ¼ ðfmÞmALr
be a compactly

supported M-refinable function vector with mask a and dilation M; that is, #fðMTxÞ ¼
âðxÞ #fðxÞ: Then f is a Hermite interpolant of order r if and only if

(1) #f0ð0Þ ¼ 1 (this is a normalization condition for a refinable function vector);
(2) nNða;MÞ4r (In particular, the inequality n2ða;MÞ4r þ s=2 implies

nNða;MÞ4r);
(3) að0Þ ¼ SðM	1;LrÞ=jdet Mj and aðMbÞ ¼ 0 for all bAZs

\f0g; where the matrix

SðM	1;LrÞ is defined to be

ðM	1xÞm

m!
¼
X
nALr

SðM	1;LrÞm;n
xn

n!
; mALr; ð5:2Þ
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(4) The mask a satisfies the sum rules of order r þ 1 in (2.8) and (2.9) with a sequence

yAðc0ðZsÞÞ1�#Lr such that

ð	iDÞm

m!
ŷð0Þ ¼ eT

m ; jmjpr; mANs
0; ð5:3Þ

where em denotes the mth coordinate unit vector in Rð#LrÞ:

Proof. Let m :¼ jdet Mj: Suppose that f is a Hermite interpolant of order r: Then

fAðCrðRsÞÞð#LrÞ�1 and the shifts of f are stable (in fact, linearly independent). By

Theorem 4.3, nNða;MÞ4r: So, (2) holds. From the refinement equation fðM	1�Þ ¼
m
P

bAZs aðbÞfð� 	 bÞ; by Proposition 2.1, for j ¼ 0;y; r; we have

½D j#f�ðM	1�ÞSðM	1;OjÞ ¼ D j#½fðM	1�Þ� ¼ m
X
bAZs

aðbÞ½D j#f�ð� 	 bÞ:

Note that SðM	1;LrÞ ¼ diagðSðM	1;O0Þ;SðM	1;O1Þ;y;SðM	1;OrÞÞ: It follows
from the definition of a Hermite interpolant of order r in (5.1) that for any aAZs;

dðaÞSðM	1;LrÞ=m ¼ ½1;D;y;Dr�#fðaÞSðM	1;LrÞ=m

¼
X
bAZs

aðbÞ½1;D;y;Dr�#fðMa	 bÞ ¼ aðMaÞ:

So (3) holds. Since f is a refinable Hermite interpolant, by Proposition 3.2 and
Theorem 4.3, we must have ðp � yÞ � f ¼ p for all pAPr and a satisfies the sum rules

of order r þ 1 in (2.8) and (2.9) for some sequence yAðc0ðZsÞÞ1�#Lr : By (2.13),

ðp � yÞ � f ¼
X
mALr

DmpðbÞ ð	iDÞm

m!
ŷð0Þfð� 	 bÞ ¼ p 8pAPr: ð5:4Þ

Since f is a Hermite interpolant, by (5.4), for all pAPr and aAZs; we have

½1;D;y;Dr�#pðaÞ ¼
X
mALr

DmpðbÞ ð	iDÞm

m!
ŷð0Þ½1;D;y;Dr�#fða	 bÞ

¼
X
mALr

DmpðaÞ ð	iDÞm

m!
ŷð0Þ:

It follows from the above identity that the sequence y must satisfy (5.3). So, (4)

holds. In particular, from (5.4), we have
P

bAZs f0ð� 	 bÞ ¼ 1 and therefore, #f0ð0Þ ¼
1: So, (1) holds.

Conversely, it is known [17] that there is a 2-refinable function vector

cAðCrðRÞÞðrþ1Þ�1 which is a Hermite interpolant of order r whose mask is supported
on ½	1; 1�: Such c is in fact a B-spline function vector with multiple knots. Define a
function vector f by

fðm1;y;msÞðt1;y; tsÞ :¼ cm1ðt1Þ?cms
ðtsÞ; ðm1;y; msÞALr:
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It is easy to verify that f is a Hermite interpolant of order r and (5.4) holds
with f being replaced by f and with the sequence y in (4). So f satisfies the

moment conditions of order r þ 1 with respect to y: Note that (1) implies ŷð0Þ #fð0Þ ¼
#f0ð0Þ ¼ 1: By Theorem 4.3, it follows from (2) and the fact ŷð0Þ #fð0Þ ¼ ŷð0Þf̂ð0Þ ¼ 1
that the cascade algorithm associated with mask a; dilation matrix M and the initial

function vector f converges to f in ðCrðRsÞÞð#LrÞ�1: Let fn :¼ Qn
a;Mf : By Proposition

2.1 and fnðM	n�Þ ¼ mn
P

bAZs anðbÞf ð� 	 bÞ; since f is a Hermite interpolant, we

observe that

ð½1;D;y;Dr�#fnÞðaÞSðM	n;LrÞ ¼mn
X
bAZs

½1;D;y;Dr�#f ðMna	 bÞ

¼mnanðMnaÞ:

By aðMbÞ ¼ dðbÞSðM	1;LrÞ=m for all bAZs; by induction we see that

anðMnbÞ ¼ dðbÞ ½SðM	1;LrÞ�n=mn for all bAZs: Observing SðM	n;LrÞ ¼
½SðM	1;LrÞ�n; we conclude that ½1;D;y;Dr�#fnðaÞ ¼ dðaÞI#Lr

and therefore, fn

must be a Hermite interpolant for all n: Consequently, f must be a Hermite
interpolant of order r since DnfmðaÞ ¼ lim

n-N

Dn½fn�mðaÞ ¼ dðm	 nÞdðaÞ for all m; nALr

and aAZs: &

Univariate refinable Hermite interpolants have been studied in [12,17,37,45,46].
We say that a mask a is a Hermite interpolatory mask of order r with respect to the
dilation matrix M if (3) and (4) in Corollary 5.2 hold. The concept of Hermite
interpolatory masks in the univariate setting has been introduced in [17] and a family
of Hermite interpolatory masks of order r with a general dilation factor has been
constructed in [17].

In the univariate setting with M ¼ 2; a necessary and sufficient condition
for a refinable function vector to be a Hermite interpolant was obtained in [46].
Our characterization in Corollary 5.2 is much simpler than that of [46] even
for the univariate case. Refinable Hermite interpolants have been also discussed in
[23]. See [23] for construction of multivariate Hermite interpolatory masks with
symmetry.

In the rest of this section, we have the result about the sequence y for a Hermite
interpolatory mask.

Proposition 5.3. Let M be an s � s dilation matrix. Let a be a finitely supported mask

on Zs with multiplicity #Lr such that að0Þ ¼ SðM	1;LrÞ=jdet Mj and aðMbÞ ¼ 0 for

all bAZs
\f0g: Suppose that a satisfies the sum rules of order k þ 1 ðkXrÞ in (2.8) and

(2.9) with some sequence yAðc0ðZsÞÞ1�r: Let s ¼ ðs1;y; ssÞ; where s1;y; ss are all

the eigenvalues of M: If smefsn: nALrg for all rojmjpk and mANs
0 (this clearly holds

when M is an isotropic dilation matrix), then we must have Dmŷð0Þ ¼ 0 for all

rojmjpk:
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Proof. Denote ym :¼ ð	iDÞmŷð0Þ=m! and Ja
a ðmÞ :¼ jdet Mj

P
bAZs aðaþ MbÞðM	1aþ

bÞm=m!: Using the Leibniz differentiation formula, the definition of sum rules in (2.8)
and (2.9) can be equivalently translated into [17]X

0pnpm

ð	1Þjnjym	nJ
a
a ðnÞ ¼

X
jnj¼jmj

SðM	1;OjmjÞm;nyn 8mALk; aAZs: ð5:5Þ

Since aðMbÞ ¼ dðbÞSðM	1;LrÞ=jdet Mj for all bAZs; we have Ja
0 ðmÞ ¼

dðmÞSðM	1;LrÞ: Setting a ¼ 0 in (5.5), we deduce that ymSðM	1;LrÞ ¼ ymJa
0 ð0Þ ¼P

jnj¼jmj SðM	1;OjmjÞm;nyn; mALk: Denote Yn :¼ ðymÞmAOn
as a #On �#Lr matrix.

Therefore, we have YnSðM	1;LrÞ ¼ SðM	1;OnÞYn for n ¼ 0;y; k which is

equivalent to ðSðM	1;LrÞT#I#On
ÞvecðYnÞ ¼ ðI#Lr

#SðM	1;OnÞÞvecðYnÞ for all

n ¼ 0;y; k: By assumption on M; we see that

SðM	1;LrÞT#I#On
	 I#Lr

#SðM	1;OnÞ

¼ ½SðM	1;LrÞT#SðM;OnÞ 	 I#Lk
#I#On

�½I#Lk
#SðM	1;OnÞ�

is invertible for all n ¼ r þ 1;y; k: So, we have Yn ¼ 0 for all n ¼ r þ 1;y; k which
completes the proof. &

If a is a Hermite interpolatory mask of order r with respect to a dilation matrix M

and a satisfies the sum rules of order k ðkXrÞ with a sequence y; then (5.3) holds and

ð	iDÞmŷð0Þ ¼ 0 for all rojmjpk; moreover, Pk;y ¼ fðDmpÞmALr
: pAPkg and by

Proposition 2.10, Sa;MððDmpÞmALr
Þ ¼ ðDm½pðM	1�Þ�ÞmALr

for all pAPk:

6. Error estimate of vector cascade algorithms in Sobolev spaces

In applications, when the coefficients of a mask (such as the Daubechies’
orthogonal masks in [9]) are irrational numbers, one often needs to truncate such a
mask. Heil and Collela [24] studied how such truncation affects a scalar refinable
function in the univariate LN case. Daubechies and Huang [10] studied how
truncation affects the associated scalar refinable function in the univariate LN case
in the frequency domain. Han [14,15] first provided a sharp error estimate for
multivariate scalar refinable functions and for their cascade algorithms with a
perturbed mask in any Lp norm. More specifically, it was proved in [14,15] that if a

scalar cascade algorithm associated with a mask a converges in the Lp norm, then

there exist two positive constants Z and C such that for any mask b such that
jja 	 bjjc1ðZsÞoZ and b satisfies the sum rules of order 1; one has

jjQn
a;Mf 	 Qn

b;Mf jjLpðRsÞpCjja 	 bjjc1ðZsÞ 8nAN

and

jjfa 	 fbjjLpðRsÞpCjja 	 bjjc1ðZsÞ;
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where f is an initial function in the scalar cascade algorithm, and fa and fb denote
the scalar M-refinable functions with masks a and b; respectively, with the standard

normalization condition #fað0Þ ¼ #fbð0Þ ¼ 1:
The main idea in [14,15] was used in [20] to obtain error estimate for vector

cascade algorithms in the univariate Lp case, and recently was generalized by Chen

and Plonka [5] to establish error estimates for scalar cascade algorithms in a Sobolev
space with a particular initial function which is the tensor product of a certain B-
spline function. Such a restriction on the initial functions in [5] was completely
removed in [19].

As we shall discuss later, the situation for vector cascade algorithms is much more
complicated. Let a be a finitely supported mask on Zs with multiplicity r: We denote

by yaAðc0ðZsÞÞ1�r a sequence such that

Dm½ ŷaðMT �Þâð�Þ�ð0Þ ¼ Dmŷað0Þ 8jmjpk and ŷað0Þa0: ð6:1Þ
Note that there are many choices for such a sequence ya: But when (3.1) holds, by
Proposition 3.2, up to a scalar multiplication, there exists a unique sequence

yaAðcðLkÞÞ1�r; where Lk :¼ fbANs
0: jbjpkg:

In the scalar case r ¼ 1; by uniformly normalizing ya by ŷað0Þ ¼ 1; we observe that
the set Fk;ya;p is independent of the mask a since Fk;ya;p ¼ Fk;d;p: However, when

r41; it is not easy to uniformly normalize the sequence ya and in fact Fk;ya;p indeed

depends on the sequence ya which in turn depends on the mask a: Such difficulty
makes the error estimate in the vector case much more complicated. As a matter of
fact, the error estimate for the univariate vector cascade algorithms in [20] requires
that the perturbed mask satisfy a strict condition which makes such an error estimate
in [20] less useful in practice. It is the purpose of this section to satisfactorily settle Q4
in Section 1 for the vector case in any dimension using the results in previous
sections.

Lemma 6.1. Let M be an s � s isotropic dilation matrix. Let k be a nonnegative integer

and O be a compact subset of Zs with 0AO: Let a be a finitely supported matrix mask

on Zs with multiplicity r: We assume that

(a) aðbÞ ¼ 0 for all bAZs
\O; that is, aAðcðOÞÞr�r;

(b) 1 is a simple eigenvalue of âð0Þ and all other eigenvalues of âð0Þ are less than

rðMÞ	k
in modulus;

(c) a satisfies the sum rules of order k þ 1 in (2.8) and (2.9) with a sequence

yaAðc0ðZsÞÞ1�r
and ŷað0Þa0;

(d) rkða;M; p; yaÞojdet Mj1=p	1rðMÞ	k; that is, the cascade algorithm associated

with mask a; dilation M and every initial function vector fAFk;ya;p converges in

the Sobolev space ðW k
p ðRsÞÞr�1:

Note that (d) implies both (b) and (c) by Theorem 4.3. Then there exist positive

constants Z and C such that for every bANZða; k;M;OÞ satisfying Vk;yb ¼ Vk;ya ; one
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has rkðb;M; p; ybÞojdet Mj1=p	1rðMÞ	k
and

jjan � v 	 bn � vjjðcpðZsÞÞr�1pCjdet Mjnð1=p	1ÞrðMÞ	knjja 	 bjjðc1ðZsÞÞr�r

8vABk	1;ya ; nAN; ð6:2Þ

where an is defined in (2.7) and b̂nðxÞ ¼ b̂ððMTÞn	1xÞ?b̂ðMTxÞb̂ðxÞ: By

bANZða; k;M;OÞ we mean

(1) bðbÞ ¼ 0 for all bAZs
\O; that is, bAðcðOÞÞr�r;

(2) jja 	 bjjðc1ðZsÞÞr�roZ;
(3) 1 is a simple eigenvalue of b̂ð0Þ and all other eigenvalues of b̂ð0Þ are less than

rðMÞ	k
in modulus;

(4) b satisfies the sum rules of order k þ 1 in (2.8) and (2.9) with a sequence

ybAðc0ðZsÞÞ1�r:

Note that both Z and C are independent of b and n:

Proof. Denote m :¼ jdet Mj: Let Ae and Be be defined in (4.5) for the masks a and b

with K defined in (10) of Theorem 4.3 and K0 :¼ O	 GM þ faAZs: jajp1g;
respectively. Denote A :¼ fAejVk;ya-ðcðKÞÞr�1 : eAGMg and B :¼ fBejVk;ya-ðcðKÞÞr�1 :

eAGMg: As in [5,14,15,19], there exist Z40; 0oro1 and C140 such that for all

bANZða; k;M;OÞ such that Vk;yb ¼ Vk;ya ; one has jjBnjjppC1m
n=p	nrðMÞ	knrn for

all nAN:
By Proposition 2.4, we assume that ŷaðxÞ ¼ ½ ŷa

1ðxÞ; 0;y; 0� with ŷa
1ð0Þ ¼ 1

and by (c), âðxÞ must take the form of (2.10) and (2.11). Now by Lemma 3.3

and (3), we see that Vk;yb ¼ Vk;ya if and only if b̂ðxÞ also takes the form of (2.10)

and (2.11) with a being replaced by b: We observe [5,14,15,19] that for all

vAðc0ðZsÞÞr�1;

jjbn � v 	 an � vjjðcpðZsÞÞr�1

p
Xn

j¼1

X
e1;y;enAGM

jjBe1?Bej	1
ðBej

	 Aej
ÞAejþ1

?Aen
vjjpðcpðZsÞÞr�1

 !1=p

:

Note that Vk;ya ¼ Vk;d � ðc0ðZsÞÞðr	1Þ�1: Using the special form of âðxÞ
and b̂ðxÞ in (2.10) and (2.11), by (2.19) and (2.20), we see that
ðBej

	 Aej
ÞVk	1;yaDVk;ya : By Proposition 2.5, Aejþ1

?Aen
Vk	1;yaDVk	1;ya :

Note that jjBej
	 Aej

jjpjja 	 bjjðc1ðZsÞÞr�r : Now by a similar argument as in [5],
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for vABk	1;ya ; one hasX
ejþ1;y;enAGM

X
e1;y;ejAGM

jjBe1?Bej	1
ðBej

	 Aej
ÞAejþ1

?Aen
vjjpðcpðZsÞÞr�1

pC1mð j	1Þð1	pÞrðMÞ	kð j	1Þprð j	1ÞpjjBej
	 Aej

jjp

�
X

ejþ1;y;enAGM

jjAejþ1
?Aen

vjjpðcpðZsÞÞr�1

pC2jjvjjpðc1ðZsÞÞr�1rð j	1Þpjja 	 bjjpðc1ðZsÞÞr�r mnð1	pÞrðMÞ	knp

for some constants C1 and C2 independent of b and n: It follows from the above
inequalities that

jjbn � v 	 an � vjjðcpðZsÞÞr�1

pC
1=p
2 jjvjjðc1ðZsÞÞr�1mnð1	1=pÞrðMÞ	knjja 	 bjjðc1ðZsÞÞr�r

Xn

j¼1

r j	1:

So, (6.2) holds with C given by

C ¼ C
1=p
2 maxfjjvjjðc1ðZsÞÞr�1 : vABk	1;yag

XN
j¼0

r joN: &

The following is the main result in this section which settles Q4 in Section 1.

Theorem 6.2. Let M be an s � s isotropic dilation matrix. Under the same assumptions

(a)–(d) on the mask a as in Lemma 6.1. Then there exist positive constants Z; C1; C2

and C3 such that

(1) For every initial function vector fAFk;ya;p;

jjQn
a;Mf 	 Qn

b;Mf jjðW k
p ðRsÞÞr�1

pC1jja 	 bjjðc1ðZsÞÞr�r 8nAN; bANZða; k;M;OÞ ð6:3Þ

provided that Fk;yb;p ¼ Fk;ya;p;

(2) With an appropriate choice for yb; we have

jjya 	 ybjjðc1ðZsÞÞ1�rpC2jja 	 bjjðc1ðZsÞÞr�r 8bANZða; k;M;OÞ; ð6:4Þ

(3) rkðb;M; p; ybÞojdet Mj1=p	1rðMÞ	k; that is, for every mask bANZða; k;M;OÞ;
the cascade algorithm associated with mask b; dilation M and every fAFk;yb;p

converges in the Sobolev space ðW k
p ðRsÞÞr�1;

(4) With the choice yb in (2), let fa and fb be two compactly supported M-refinable

function vectors such that

#faðMTxÞ ¼ âðxÞ #faðxÞ; ŷað0Þ #fað0Þ ¼ 1
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and

#fbðMTxÞ ¼ b̂ðxÞ #fbðxÞ; ŷbð0Þ #fbð0Þ ¼ 1: ð6:5Þ

Then fa and fb belong to the Sobolev space ðW k
p ðRsÞÞr�1

and one has the

following estimate:

jjfa 	 fbjjðW k
p ðRsÞÞr�1pC3jja 	 bjjðc1ðZsÞÞr�r 8bANZða; k;M;OÞ: ð6:6Þ

Note that all Z; C1; C2 and C3 are independent of n and b:

Proof. By Lemma 3.3, Fk;ya;p ¼ Fk;yb;p implies Vk;ya ¼ Vk;yb : Since fAFk;ya;p; by

Corollary 3.7, ½#kD�#f ¼
P

vABk	1;ya
v � Hk;v for some compactly supported

function vectors Hk;vAðLpðRsÞÞ1�sk

: Let m :¼ jdet Mj: By induction,

Qn
a;Mf 	 Qn

b;Mf ¼ mn
X
bAZs

ðan 	 bnÞðbÞf ðMn � 	bÞ:

Therefore, by Proposition 2.1, we have

½#kD�#½Qn
a;Mf 	 Qn

b;Mf �

¼ mn
X
bAZs

ðan 	 bnÞðbÞð½#kD�#f ÞðMn � 	bÞð#kMnÞ

¼ mn
X

vABk	1;ya

X
bAZs

ðan � v 	 bn � vÞðbÞHk;vðMn � 	bÞð#kMnÞ:

Since rð#kMnÞ ¼ rðMÞkn and all Hk;v are compactly supported function vectors in

ðLpðRsÞÞ1�sk

; there exists a positive constant C0 such that

jj½#kD�#½Qn
a;Mf 	 Qn

b;Mf �jjðLpðRsÞÞr�sk

pC0mnð1	1=pÞrðMÞkn
X

vABk	1;ya

jjan � v 	 bn � vjjðcpðZsÞÞr�1 :

By Lemma 6.1, (6.2) holds. Consequently, we deduce that

jj½#kD�#½Qn
a;Mf 	 Qn

b;Mf �jjðLpðRsÞÞr�sk pCC0ð#Bk	1;yaÞjja 	 bjjðc1ðZsÞÞr�r

for all nAN and bANZða; k;M;OÞ such that Vk;yb ¼ Vk;ya : Since all Qn
a;Mf

and Qn
b;Mf are supported on a fixed compact set, we conclude that (6.3) holds for

some constant C1 independent of b and n: In fact, (6.3) holds for every
fAFk;ya;p-Fk;yb;p:

In the following, we prove (2)–(4). By Proposition 2.4, without loss of generality,

we assume that ŷaðxÞ ¼ ½ ŷa
1ðxÞ; 0;y; 0� with ŷa

1ð0Þ ¼ 1: Write ŷbðxÞ ¼ ½ ŷb
1ðxÞ; ŷb

2ðxÞ�:
Since bANZða; k;M;OÞ implies that 1 is a simple eigenvalue of b̂ð0Þ; there is a unique

solution ŷbð0Þ to the equation ŷbð0Þb̂ð0Þ ¼ ŷbð0Þ with ŷb
1ð0Þ ¼ 1: In fact, ŷb

2ð0Þ ¼
ŷb
1ð0Þb̂1;2ð0Þ½Ir	1 	 b̂2;2ð0Þ�	1: Since âðxÞ takes the form of (2.10), we have
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rðâ2;2ð0ÞÞo1 and â1;2ð0Þ ¼ 0: Therefore, ŷb
2ð0Þ is well defined since rðb̂2;2ð0ÞÞo1

when Z is small enough. Since â1;2ð0Þ ¼ 0; by condition (3) in Lemma 6.1,

jjŷað0Þ 	 ŷbð0Þjj ¼ jjŷb
2ð0ÞjjpCjjb̂1;2ð0Þjj

¼Cjjâ1;2ð0Þ 	 b̂1;2ð0ÞjjpCjja 	 bjjðc1ðZsÞÞr�r

for some constant C: By condition (3) in Lemma 6.1, it follows from Lemma 2.2 that

there is a unique solution fDmŷbð0Þ: 0ojmjpkg to the system of linear equations

Dm½ ŷbðMT �Þb̂ð�Þ�ð0Þ ¼ Dmŷbð0Þ for 0ojmjpk and in fact it is easy to check that there
exists a positive constant C0 independent of b such that

sup
mALk

jjDmŷbð0Þ 	 Dmŷað0ÞjjpC0jja 	 bjjðc1ðZsÞÞr�r 8bANZða; k;M;OÞ: ð6:7Þ

It is well known that there exists a unique yAðcðLkÞÞ1�r such that Dmŷð0Þ; jmjpk are

preassigned. Choose the sequences ya and yb in ðcðLkÞÞ1�r: It follows from (6.7) that
(6.4) holds for some constant C2 independent of b:

Let yb be the sequence chosen above with ŷb
1ð0Þ ¼ 1: As in the proof of Proposition

2.4, there exists a unique sequence cAðcðLkÞÞ1�ðr	1Þ such that Dmĉð0Þ ¼
Dm½ ŷb

2ð�Þ=ŷb
1ð�Þ�ð0Þ for all jmjpk: So,

sup
mALk

jjDmĉð0ÞjjpC1 sup
mALk

jjDmŷb
2ð0ÞjjpC1 sup

mALk

jjDmŷað0Þ 	 Dmŷbð0Þjj

for some constant C1: Consequently, by (6.7),

jjcjjðc1ðZsÞÞ1�ðr	1ÞpC sup
mALk

jjDmŷbð0Þ 	 Dmŷað0ÞjjpCC0jja 	 bjjðc1ðZsÞÞr�r ð6:8Þ

for some constant C independent of b: Define UAðc0ðZsÞÞr�r by

ÛðxÞ :¼
1 	ĉðxÞ
0 Ir	1

" #
:

Define

#̃
bðxÞ :¼ ÛðMTxÞ	1

b̂ðxÞÛðxÞ; ŷb̃ðxÞ ¼ ŷbðxÞÛðxÞ and #fb̃ðxÞ :¼ ÛðxÞ	1 #fbðxÞ;

where fb is given in (6.5). Then #fb̃ðMTxÞ ¼ #̃
bðxÞ #fb̃ðxÞ and #̃yð0Þ #fb̃ð0Þ ¼ 1: It follows

from (6.8) that there exists a small enough Z040 such that bANZ0 ða; k;M;OÞ implies

b̃ANZða; k;M;OÞ since
jjU 	 Irdjjðc1ðZsÞÞr�r ¼ jjcjjðc1ðZsÞÞ1�ðr	1ÞpCC0jja 	 bjjðc1ðZsÞÞr�r : ð6:9Þ

Since Dmŷa
j ð0Þ ¼ Dmŷb̃

j ð0Þ ¼ 0 for all jmjpk and j ¼ 2;y; r; using the relation

between b and b̃; one can easily verify that jja 	 b̃jjðc1ðZsÞÞr�rpC2jja 	 bjjðc1ðZsÞÞr�r for

some constant C2 independent of b: Replace Z by the smaller Z0: By Lemma 3.3 and

ŷa
1ð0Þ ¼ ŷb̃

1ð0Þ ¼ ŷb
1ð0Þ ¼ 1; F

k;yb̃;p
¼ Fk;ya;p: By what has been proved in ð1Þ; we
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have the following estimate:

jjfb̃ 	 fajjðW k
p ðRsÞÞr�1pC1jja 	 b̃jjðc1ðZsÞÞr�rpC1C2jja 	 bjjðc1ðZsÞÞr�r

and consequently, jjfb̃jjðW k
p ðRsÞÞr�1p2jjfajjðW k

p ðRsÞÞr�1 for small enough Z: On the other

hand, since #fbðxÞ 	 #fb̃ðxÞ ¼ ðÛðxÞ 	 IrÞ #fb̃ðxÞ; we deduce that

jjfb 	 fb̃jjðW k
p ðRsÞÞr�1p jjU 	 Irdjjðc1ðZsÞÞr�r jjfb̃jjðW k

p ðRsÞÞr�1

p 2CC0jjfajjðW k
p ðRsÞÞr�1 jja 	 bjjðc1ðZsÞÞr�r :

Consequently, taking C3 :¼ C1C2 þ 2CC0jjfajjðW k
p ðRsÞÞr�1 ; we have estimate in (6.6)

since

jjfb 	 fajjðW k
p ðRsÞÞr�1p jjfb 	 fb̃jjðW k

p ðRsÞÞr�1 þ jjfb̃ 	 fajjðW k
p ðRsÞÞr�1

pC3jja 	 bjjðc1ðZsÞÞr�r :

By Lemma 6.1, we have rkðb̃;M; p; yb̃Þom1=p	1rðMÞ	k since V
k;yb̃ ¼ Vk;ya : By the

relation between b and b̃; it is easy to verify that rkðb;M; p; ybÞ ¼ rkðb̃;M; p; yb̃Þ:
Consequently, rkðb;M; p; ybÞom1=p	1rðMÞ	k: &

The proofs of Lemma 6.1 and Theorem 6.2 yield that limZ-0;bANZða;k;M;OÞnpðb;MÞ ¼
npða;MÞ which is not a trivial fact since the space Vk;yb in the definition of npðb;MÞ
changes with b and is not invariant under perturbation.

7. Computing the important quantity m2ða;MÞ

Since the quantity npða;MÞ; which is defined in (4.3), plays a very important role in

characterizing the convergence of a vector cascade algorithm in a Sobolev space and
in characterizing the Lp smoothness of a refinable function vector, it is of interest to

find a numerical algorithm for efficiently computing or estimating the quantity
npða;MÞ:

For a matrix A; we denote A� :¼ %AT : For u; vAðc2ðZsÞÞm�n; define

/u; vS :¼ trace
X
bAZs

uðbÞvðbÞ�
 !

¼ trace
1

ð2pÞs

Z
½	p;pÞs

ûðxÞv̂ðxÞ� dx

 !
: ð7:1Þ

There are two operators Sa;M and Ta;M which are convolved version

of the operators Sa;M and Ta;M in Proposition 2.5. Define Sa;M and
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Ta;M to be

Sa;MvðaÞ ¼ jdet Mj
X

b;gAZs

aðMg	 aþ bÞ�vðgÞaðbÞ; aAZs; vAðc0ðZsÞÞr�r;

Ta;MvðaÞ ¼ jdet Mj
X

b;gAZs

aðMa	 gþ bÞvðgÞaðbÞ�; aAZs; vAðc0ðZsÞÞr�r:

It is easy to check that /Sa;Mu; vS ¼ /u;Ta;MvS for all u; vAðc0ðZsÞÞr�r: Recall

that specðAÞ denotes the multiset of all the eigenvalues of A counting the multiplicity
of the eigenvalues.

It is known in the literature that n2ða;MÞ can be computed by finding the spectral
radius of a finite matrix (see [8,11,16,18,21,26,28,32,33,42,43] and references therein).
In the vector case, Jia and Jiang [28] found the following algorithm for computing
n2ða;MÞ for an isotropic dilation matrix M for which we shall provide a self-
contained and simple proof here.

Theorem 7.1. Let M be an s � s dilation matrix and s ¼ ðs1;y; ssÞ;
where specðMÞ ¼ fs1;y; ssg: Let a be a finitely supported mask on Zs

with multiplicity r such that a satisfies the sum rules of the highest possible order

k þ 1 but not k þ 2 in (2.8) and (2.9) with some sequence yAðc0ðZsÞÞ1�r
and ŷð0Þa0:

Then the quantity n2ða;MÞ defined in (4.3) can be calculated by the following

procedure:

(1) Form a new sequence bAðc0ðZsÞÞr2�r2
by

bðaÞ :¼ jdet Mj
X
bAZs

aðbÞ#aðaþ bÞ; aAZs; ð7:2Þ

(2) Calculate the set K ¼ Zs-
P

N

j¼1 M	jðsupp bÞ; where supp b :¼ fbAZs: bðbÞa0g;
(3) Define the set Ek to be

Ek :¼fls	m; %ls	m: lAspecðâð0ÞÞ\f1g; jmjpkg

,fs	m: jmjp2k þ 1g: ð7:3Þ

Then the quantity rkða;M; p; yÞ; which is defined in (4.1), is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rk=jdet Mj

p
;

where

rk :¼ maxfjlj: lAspecððbðMa	 bÞÞa;bAKÞ\Ekg:

Consequently, n2ða;MÞ ¼ 	logrðMÞ
ffiffiffiffiffi
rk

p
:

Proof. By Proposition 2.4, without loss of generality, we can assume ŷðxÞ ¼
½ ŷ1ðxÞ; 0;y; 0�: By assumption on mask a and Proposition 2.4, âðxÞ must take

the form of (2.10) such that (2.11) holds. Let Wk :¼ spanfw: ŵðxÞ ¼
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ûðxÞv̂ðxÞ�; u; vAVk;yg: Since Vk;y ¼ Vk;d � ðc0ðZsÞÞðr	1Þ�1; we can easily deduce

that

Wk ¼
v1;1 v1;2

v2;1 v2;2

" #
: v1;1AV2kþ1;d; v1;2AðVk;dÞ1�ðr	1Þ;

(

v2;1AðVk;dÞðr	1Þ�1; v2;2Aðc0ðZsÞÞðr	1Þ�ðr	1Þ
)
:

For a finite-dimensional subspace V of ðc0ðZsÞÞr�r such that Ta;MVDV ; it was

proved in [21] that specðTa;M jV Þ,f0g ¼ specðTa;M jV-ðcðKÞÞr�rÞ,f0g: So, for

simplicity, specðTa;M jV Þ always means specðTa;M jV-ðcðKÞÞr�rÞ:
Let m :¼ jdet Mj: For vAVk;y; let w denote the sequence given by ŵðxÞ ¼

v̂ðxÞv̂ðxÞ�: By induction, one has

ð2pÞsjjan � vjj2ðc2ðZsÞÞr�1 ¼ð2pÞs/an � v; an � vS

¼ trace

Z
½	p;pÞs

ânðxÞv̂ðxÞv̂ðxÞ�ânðxÞ� dx

 !

¼ 1

mn
trace

Z
½	p;pÞs

dTn
a;MwTn
a;MwðxÞ dx

 !
:

For wAðc0ðZsÞÞr�r such that ŵðxÞX0 (that is, ŵðxÞ is positive semidefinite), we have
Tn

a;MwðxÞX0 and

trace

Z
½	p;pÞs

dTn
a;MwTn
a;MwðxÞ dx

 !
p
Z
½	p;pÞs

jj dTn
a;MwTn
a;MwðxÞjjc1 dx

p r � trace

Z
½	p;pÞs

dTn
a;MwTn
a;MwðxÞ dx

 !
:

By the Cauchy–Schwartz inequality, we deduce that

rkða;M; 2; yÞ ¼ supfjjan � vjj1=n

ðc2ðZsÞÞr�1 : vAVk;yg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðTa;M jWk

Þ=m
q

:

In order to calculate rðTa;M jWk
Þ; we define three types of subspaces U1

j ;U2
j ;U3

j of

ðPjÞr�r by

U1
j :¼

p 0

0 0

" #
: pAPj

( )
; U2

j :¼
0 0

p 0

" #
: pAðPjÞðr	1Þ�1

( )
; jAN0 ð7:4Þ
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and U3
j :¼ fp: pTAU2

j g: Due to the special form of âðxÞ in (2.10) and (2.11), by a

simple computation, it follows directly from (2.19) and (2.21) that

Sa;M

p 0

0 0

" #
¼

m
P

b;gAZs

a�
1;1ðMg	 � þ bÞpðgÞa1;1ðbÞ 0

0 0

24 35
¼

Sc;Mp 0

0 0

" #
; pAP2kþ1;

where cAc0ðZsÞ is given by cðaÞ ¼
P

bAZs a1;1ðb	 aÞa1;1ðbÞ; that is, ĉðxÞ ¼ jâ1;1ðxÞj2:
Since a1;1 satisfies the sum rules of order k þ 1; so c satisfies the sum rules of order

2k þ 2: By (6) in Proposition 2.4, Sc;Mp 	 pðM	1�ÞAPdegðpÞ	1 for all pAP2kþ1:

Therefore, Sc;Mp � pðM	1�ÞmodPj	1 for all pAPj=Pj	1 and j ¼ 0;y; 2k þ 1:

Consequently,

specðSc;M jPj=Pj	1
Þ ¼ specðSðM	1;OjÞÞ ¼ fs	m: jmj ¼ jg;

where SðM	1;OjÞ is defined in (2.1). Hence,

specðSa;M jU1
2kþ1

Þ ¼ specðSc;M jP2kþ1
Þ ¼

[2kþ1

j¼0

specðSc;M jPj=Pj	1
Þ

¼ fs	m: jmjp2k þ 1g:

By Proposition 2.4 and a simple computation, it follows from (2.19) and (2.21) that

for all pAðPkÞðr	1Þ�1;

Sa;M

0 0

p 0

" #
¼m

P
b;gAZs

a�
2;1ðbÞpðgÞa1;1ð� 	 Mgþ bÞ 0P

b;gAZs

a�
2;2ðbÞpðgÞa1;1ð� 	 Mgþ bÞ 0

264
375

¼

P
bAZs

a�
2;1ðbÞ½Sa1;1;Mp�ð� þ bÞ 0P

bAZs

a�
2;2ðbÞ½Sa1;1;Mp�ð� þ bÞ 0

264
375: ð7:5Þ

Since a1;1 satisfies the sum rules of order of k þ 1; by Proposition 2.5 and â2;2ð0Þ ¼P
bAZs a2;2ðbÞ; for pAðPkÞðr	1Þ�1; we haveX

bAZs

a�
2;2ðbÞ½Sa1;1;Mp�ð� þ bÞ �

X
bAZs

a�
2;2ðbÞpðM	1ð� þ bÞÞ

� â2;2ð0Þ�pðM	1�Þ mod ðPdegðpÞ	1Þðr	1Þ�1:
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Consequently, the quotient group ðU2
j "U1

2kþ1Þ=ðU2
j	1"U1

2kþ1Þ is invariant under

Sa;M and for j ¼ 0;y; k;

Sa;M

0 0

p 0

" #
�

0 0

â2;2ð0Þ�pðM	1�Þ 0

" #
;

0 0

p 0

" #
AðU2

j "U1
2kþ1Þ=ðU2

j	1"U1
2kþ1Þ:

Now by specðâ2;2ð0ÞÞ ¼ specðâð0ÞÞ\f1g; it is easy to verify that

specðSa;M jðU2
j
"U1

2kþ1
Þ=ðU2

j	1
"U1

2kþ1
ÞÞ

¼ flZ: lAspecðâ2;2ð0Þ�Þ; ZAspecðSðM	1;OjÞÞg

¼ f%ls	m: lAspecðâð0ÞÞ\f1g; jmj ¼ jg:

Therefore, we have

specðSa;M jðU2
k
"U1

2kþ1
Þ=U1

2kþ1
Þ ¼

[k
j¼0

specðSa;M jðU2
j
"U1

2kþ1
Þ=ðU2

j	1
"U1

2kþ1
ÞÞ

¼ f%ls	m: lAspecðâð0ÞÞ\f1g; jmjpkg:

Similarly, we have

specðSa;M jðU3
k
"U1

2kþ1
Þ=U1

2kþ1
Þ ¼

[k
j¼0

specðSa;M jðU3
j
"U1

2kþ1
Þ=ðU3

j	1
"U1

2kþ1
ÞÞ

¼ fls	m: lAspecðâð0ÞÞ\f1g; jmjpkg:

By the definition of Vk;d; Vk;d ¼ P>
k : It is straightforward to see that Wk ¼

ðU1
2kþ1"U2

k"U3
k Þ

>: By the duality relation, we conclude that

specðTa;M jðc0ðZsÞÞr�r=Wk
Þ ¼ specðSa;M jU1

2kþ1
"U2

k
"U3

k
Þ

¼ specðSa;M jU1
2kþ1

Þ,specðSa;M jU2
k
"U1

2kþ1
=U1

2kþ1
Þ

, specðSa;M jU3
k
"U1

2kþ1
=U1

2kþ1
Þ

¼Ek:

Using the vec operation as discussed in Lemma 2.2, it is easy to see that
specðTa;M jðcðKÞÞr�rÞ ¼ specððbðMa	 bÞÞa;bAKÞ: Therefore, specðTa;M jWk

Þ ¼
specððbðMa	 bÞÞa;bAKÞ\Ek which completes the proof. &
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The above proof can be carried out similarly by using Ta;M directly instead of

using Sa;M (see [19]). The above proof can be also easily adapted to take into

account the symmetry of the mask. For computing n2ða;MÞ for scalar masks by
taking into account symmetry to significantly reduce the size of the problem, see [19].
One way of computing the set K in Theorem 7.1 is as follows. Choose any initial

finite subset K0 of Zs such that KDK0DZs: Recursively define Kj :¼
Kj	1-M	1ðKj	1 þ supp bÞ; jAN: Then there must exist some j such that Kj ¼
Kj	1: An easy argument shows that K ¼ Kj: For more detail, see [19, Proposition

2.2]. From the proof of Theorem 7.1, we observe that K can be replaced by any

finite subset K0 of Zs such that M	1ðK0 þ supp bÞ-ZsDK0 and for every

0pjpk; there is a subset Bj of ðcðK0ÞÞr�1 such that Bj generates Vj;y; that is,

spanfvð� 	 bÞ: vABj; bAZsg ¼ Vj;y:

In the univariate case, one can compute n2ða;MÞ by factorizing the symbol of a
mask [7,38,41] as follows.

Proposition 7.2. Let M be an integer such that jMj41: Let a be a matrix mask on Z

such that a satisfies the sum rules of order k þ 1 in (2.8) and (2.9) with some sequence

yAðc0ðZÞÞ1�r: Let Uy be given in Proposition 2.4 so that ÛyðMxÞ	1
âðxÞÛyðxÞ takes the

form of (2.10). Define a new sequence b by

b̂ðxÞ :¼ ð1	 e	iMxÞkþ1 0

0 Ir	1

" #	1

� ÛyðMxÞ	1
âðxÞÛyðxÞ

ð1	 e	ixÞkþ1 0

0 Ir	1

" #
: ð7:6Þ

Then b is a finitely supported sequence on Z and

rkða;M; p; yÞ ¼ r	1ðb;M; p; 0Þ :¼ lim
n-N

jjbnjj1=n

ðcpðZÞÞr�r ;

where b̂nðxÞ ¼ b̂ðMn	1xÞ?b̂ðMxÞb̂ðxÞ: Moreover, rkða;M; 2; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rk=jMj

p
; where

rk is the spectral radius of ð
P

bAZ bðbÞ#bðaþ bÞÞa;bAK ; where K :¼
Z-

P
N

j¼1 M	jðsupp a 	 supp aÞ:

Proof. By Proposition 2.4, it suffices to prove it for the case ŷðxÞ ¼ ½ ŷ1ðxÞ; 0;y; 0�
and ÛyðxÞ ¼ Ir: By (2.10) and (2.11), b must be a finitely supported sequence. Let w

be given by ŵðxÞ ¼ diagðð1	 e	ixÞkþ1; Ir	1Þ: We observe that fwej: j ¼ 1;y; rg ¼
Bk;y generates Vk;y and âðxÞ ¼ ŵðMxÞb̂ðxÞŵðxÞ	1: Consequently, we have

rkða;M; p; yÞ ¼ lim
n-N

jjan � wjj1=n

ðcpðZÞÞr�r

and dan � wan � wðxÞ ¼ ânðxÞŵðxÞ ¼ ŵðMnxÞb̂nðxÞ; nAN:
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Since all a; b and w are finitely supported, we assume that they are supported on
½	N;N� for some positive integer N: Define

ĉnðxÞ :¼
X3N	1

j¼0

diagðe	iMnjx; Ir	1Þ dan � wan � wðxÞ:

Note that

b̂nðxÞ ¼ ŵðMnxÞ	1 dan � wan � wðxÞ ¼
XN
j¼0

diagðe	iMnjx; Ir	1Þ dan � wan � wðxÞ:

It is easy to see that bn vanishes outside ½	MnN;MnN� and bnðbÞ ¼ cnðbÞ for all
bAZ-½	MnN;MnN�: Therefore, we have

ð3NÞ	1jjbnjjðcpðZÞÞr�rp ð3NÞ	1jjcnjjðcpðZÞÞr�r

p jjan � wjjðcpðZÞÞr�rpjjwjjðc1ðZÞÞr�r jjbnjjðcpðZÞÞr�r :

Consequently,

rkða;M; p; yÞ ¼ lim
n-N

jjan � wjj1=n

ðcpðZÞÞr�r ¼ lim
n-N

jjbnjj1=n

ðcpðZÞÞr�r

which completes the proof. &
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Note added in the revised version. It is straightforward to see that all the results and
proofs in the paper hold for a general (not necessarily isotropic) dilation matrix when
k ¼ 0: After submitting this paper, we became aware that the convergence of a
vector cascade algorithm in LpðRsÞ with a general dilation matrix has also been

obtained in Li [35,36] (that is, the equivalence between (1) and (10) for the case k ¼ 0
in Theorem 4.3).
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